FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Implementierung der
Konservativen Formel nach David
Blitz und Pim van Vliet

Eine Portfoliomanagement Strategie

BACHELORARBEIT

von

Andreas Michael Buchner
Matrikelnummer 11811860

Betreuung: Dipl.-Ing. Mag. Dr. Thomas Neubauer

Wien, 31.05.2021

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Andreas Michael Buchner
Glaubackerstraf3e 4, 4040 Linz

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwendeten Quellen
und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit - einschlieBlich Tabellen,
Karten und Abbildungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach ent-
nommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

il

Danksagung

Herzlichen Dank an meinen Betreuer Dipl.-Ing. Mag. Dr. Thomas Neubauer, der mir bei der Verfassung
und Themenwahl dieser Arbeit viele Freiheiten gelassen hat und mich tatkréftig unterstiitzt hat.

Weiters mochte ich mich bei meinen Eltern und meinem Bruder fiir ihre generelle Unterstiitzung und
anregenden Diskussionen bedanken.

Ausnahmsweise darf ich mich auch ein wenig fiir die Corona-Krise bedanken, durch die mir reichlich
Zeit gegeben wurde, mich mit diesem Thema zu beschéftigen und das Programm zu entwickeln.

Schlussendlich mochte ich mich auch bei den Entwicklern der Konservativen Formel bedanken, die
den wirtschaftlichen und strategischen Grundstein fiir diese Arbeit gelegt haben.

il

Abstract

Today’s stock markets are characterized by an unusual high volatility. This volatility has brought many
new traders into the stock market. To trade successfully in the stock market for a longer time span a
clearly defined strategy is essential.

The aim of this work is to present an existing strategy and to implement a program that trades stocks
automatically based on this strategy.

To achieve this goal first the strategy, the so-called Conservative Formula, and its used indicators are
being presented. Following on from this a program is being implemented, that deploys the strategy. The
implementation and the used external libraries are being explained in detail. Open issues that appeared
during implementing, which can be solved in further academic work, are being listed.

The finished program will then be tested in real time with virtual money and the results of this testing
phase are being presented. On average the results show that the Conservative Formula has an edge on
today’s stock market. At least in the tested timeframe from 11.02.2021 to 31.5.2021 the implementation
significantly outperformed the most common Benchmark ETF with the symbol ,,SPY*, that supposedly
tracks the S&P 500 Index.

v

Kurzfassung

Aktienmaérkte sind in der heutigen Zeit von einer ungewohnlich hohen Volatilitit gepriagt. Diese Volatil-
itdt hat das Interesse vieler neuer Anleger geweckt. Um in den Aktienmirkten iiber ldngere Zeit erfol-
greich zu sein, ist eine klar definierte Strategie unerlésslich.

Ziel der folgenden Arbeit ist, eine existierende Strategie vorzustellen und in Folge diese Strategie
mittels einem Programm am heutigen Aktienmarkt zu automatisieren.

Um dieses Ziel zu erreichen wird zuerst die zugrundeliegende Strategie, die sogenannte Konserva-
tive Formel, und die darin verwendeten Indikatoren vorgestellt. Darauf basierend wird ein Programm
entwickelt, das die vorgestellte Strategie umsetzt. Die Implementierung dieses Programms sowie die
dafiir benotigten externen Bibliotheken werden detailliert erkldrt. Auch Probleme, die im Laufe der
Implementierung auftraten und mdoglicherweise durch weiterfithrender Arbeiten geldst werden konnen,
werden aufgelistet.

Das erstellte Programm wird dann in Echtzeit mit virtuellem Geld getestet und die Ergebnisse dieser
Testphase prisentiert. Im Schnitt zeigt sich dabei, dass die Konservative Formel am heutigen Ak-
tienmarkt zumindest im betrachteten Zeitraum vom 11.02.2021 bis zum 31.5.2021 immer noch seine
Giiltigkeit besitzt und sich deutlich besser entwickelt, als der meist verwendete amerikanische Bench-
mark ETF mit dem Kiirzel ,,SPY “, der den S&P 500 Index abzubilden versucht.

Inhaltsverzeichnis

1 Einleitung

1.2 Forschungsfragen| e
1.3 Methoden| e

[2.3 Interpretation der Indikatoren|. Lo L oo
2.4 Die Strategie] e e e e e e e
[2.5 Ergebnisse der Konservativen Formel|

3 Programmarchitektur und Design|
3.1 UML Diagramme|

4 Implementierung|

A D

4.8 Algorithmus zur Neuausrichtung des Portfolios|
4.9 Neuausrichtung jedes Quartal|. o o oo
4.10 Umgang mit Errors|

|5 Validierung und Diskussion|
Bl _Resultafelot e e

5.2 Probleme beider Umsetzung|,

|6 Zusammenfassung|
6.1 Optimierungsvorschliagel o
6.2 Ausblickl.

G hni

Ptk

11

14
14
14
15
18
19
19
23
26
28
29

32
32
33

35
35
35

37

vi

Kapitel 1

Einleitung

1.1 Motivation

In Zeiten einer globalen Pandemie, in der die Aktienmérkte eine tiberdurchschnittlich hohe Volatilitét
aufweisen [1]], ist das Investieren riskanter geworden. Volatilitit ist eine bekannte Kennzahl, die die
Starke der Kursschwankungen eines Aktienkurses beschreibt. Diese hohe Volatilitit, welche die Kurse
innerhalb kiirzester Zeitraume in neue Hohen, aber auch Tiefen treibt, hat das Interesse vieler neuen
Investoren geweckt [[12]]. Vor allem jiingere Generationen, die die Aktienmirkte erkunden wollen und auf
der Suche nach dem schnellen Geld sind, werden in den Bann gezogen. Dazu als Vergleich der Anstieg
der Nutzerzahlen des Subreddits ,,r/wallstreetbets, ein Kanal der sozialen Plattform ,,Reddit, der seit
Beginn der Corona-Pandemie im Jahr 2020 von rund 800.000 auf knappe zehn Millionen Nutzer im April
2021 gewachsen ist [34]]. Dieser Kanal dient, wie der Name bereits vermuten lédsst, hauptsidchlich dazu,
Diskussionen iiber hochspekulativen Handel von Aktien und Optionen zu fiihren [33]].

Kurzfristigen Spekulationen, vor allem den Handel mit Optionen betreffend, ist ein hohes Risiko
charakteristisch, welche im schlimmsten Fall zum Totalverlust fithren konnen [14]]. Haufig werden Spe-
kulationen auf Basis nicht begriindbarer Gefiihle getitigt. Um aber iiber lingere Zeit am Kapitalmarkt
erfolgreich zu sein, ist eine klar definierte Strategie unerlésslich, denn Gliick und Gefiihl sind auf lange
Sicht nicht die besten Berater. Es gibt unzihlig viele Investment-Strategien und jeder kann auch eine
eigene Strategie entwickeln. Wichtig ist, dass die gewéhlte Strategie eine Entscheidungsgrundlage dafiir
ist, warum welcher Handel getitigt wird. So wird der Faktor des Gliicks und des Gefiihls minimiert und
aufgrund objektiver Signale gehandelt. Ein weiterer Vorteil einer klar definierten Strategie liegt darin,
dass die Effektivitit quantifiziert werden kann. Dadurch ist eine Vergleichbarkeit der Strategien unter-
einander moglich bzw. die objektiv bessere Strategie kann evaluiert werden [8]].

Diese Arbeit wird eine Strategie vorstellen und implementieren, die den Anspruch stellt, iiber eine
langere Zeit eine bessere Performance als der zugrundeliegende Markt zu erreichen [2]. Diese Strategie
wird von ihren Entwicklern David Blitz und Pim van Vliet die ,,Konservative Formel*“genannt.

1.2 Forschungsfragen

Die Forschungsfragen dieser Arbeit beschrinken sich im Grunde auf folgende:

1. Was ist die Konservative Formel und welche Ziele verfolgt sie?

Dabei wird untersucht, wie die Strategie der Konservativen Formel aussieht und weshalb diese
Strategie besser sein soll, als der zugrundeliegende Markt. Es werden die verwendeten Indikatoren
einzeln vorgestellt und erklért.

2. Wie kann die Konservative Formel am heutigen Aktienmarkt umgesetzt werden?

Diese Frage ist technischer Natur und stellt das eigentliche Ziel des praktischen Teils dieser Arbeit
dar: die Implementierung der Konservativen Formel und das Testen dieser am Aktienmarkt in
Echtzeit.

3. Wie gut funktioniert die Konservative Formel am heutigen Aktienmarkt?

Die Ergebnisse sollen zeigen, ob die Konservative Formel am heutigen Aktienmarkt den ge-
wiinschten Erfolg bringt.

1.3 Methoden

Dieses Kapitel beschreibt, welche Methoden und Vorgehensweisen zur Verfassung dieser Arbeit verwen-
det werden.

Literaturrecherche

Als erste Methode wird die Literaturrecherche angewendet. Dabei ist die Konservative Formel entdeckt
worden und darauf basieren auch die theoretischen Aspekte dieser Arbeit, die zum Verstindnis der Kon-
servativen Formel und dessen Indikatoren nétig sind. Im Zuge dieser Methode wird versucht, einen
groben Uberblick iiber Teilaspekte des Aktienmarkts zu geben und auf weiterfiihrende Literatur zu ver-
weisen.

Implementierung

Die Implementierung stellt den gréBten Teil dieser Arbeit dar und umfasst die Umsetzung der Konserva-
tiven Formel in ein fertiges Programm, welches autonom danach handelt. Dazu gehoren auch die Planung
und das Design.

1.4 Aufbau der Arbeit

Der Aufbau gliedert sich nach der Einleitung in folgende Kapitel: Zuerst werden die Konservative For-
mel, deren Ziele und zugrundeliegenden Berechnungsmethoden der verwendeten Indikatoren vorgestellt.
Die historischen Ergebnisse der Konservativen Formel werden erldutert und diskutiert.

Im néchsten Kapitel werden das geplante Design und die Architektur des Programms beschrieben,
bevor schlieflich der Hauptteil, die Implementierung selbst, folgt. Nach dem Hauptteil werden in der
Validierung und Diskussion die Resultate der implementierten Strategie anhand der Performance des er-
stellten Portfolios der Entwicklung des bekanntesten Benchmark-ETF, mit dem Kiirzel ,,SPY , der den
S&P 500 Index abbilden soll, gegeniibergestellt und erldutert, wo es bei der Implementierung Schwie-
rigkeiten gab. Am Schluss dieser Arbeit befindet sich eine kurze Zusammenfassung, in der auch Opti-
mierungsvorschldge angefiihrt werden sowie ein genereller Ausblick gemacht wird.

Kapitel 2

Konservative Formel

2.1 Motivation der Konservativen Formel

Das folgende Kapitel fasst die Motivation hinter der Entwicklung Konservativen Formel [2] zusammen.

Die Konservative Formel erschien im Jahr 2018 unter anderem in der Zeitschrift: ,, The Journal of
Portfolio Management*. Sie wurde von David Blitz und Pim van Vliet entwickelt.

Bei der Konservativen Formel handelt es sich um eine Portfoliomanagement-Strategie, die darauf
abzielt, das Risiko zu minimieren. Laut dem in den 1960er Jahren entwickelten Capital Pricing Model,
zu Deutsch Kapitalgutpreismodell, ist die empirische Relation von Risiko und Erfolg eine flache Gera-
de [23]]. Das bedeutet, dass ein erhohtes Risiko im Schnitt zu einem unterproportional groBem Erfolg
fiihrt. Somit fiihrt das doppelte Risiko erfahrungsgeméf nicht zu einem doppelt so groBen Gewinn. Die-
se Eigenschaft wird ,,Jlow-risk effect“genannt, wodurch sich, historisch gesehen, Portfolios mit geringem
Risiko im Durchschnitt besser entwickelten als solche, mit hoherem Risiko [3]].

Ein weiterer wichtiger Aspekt der Konservativen Formel ist, dass diese relativ einfach umzusetzen
ist. Viele andere wissenschaftlich entwickelte Strategien sehen zwar auf dem Papier gut aus, verlieren
in der Realitdt aber ihre Giiltigkeit. Entweder wird bei diesen Strategien durch Steuern oder Gebiihren,
die bei jedem Kauf bzw. Verkauf zu zahlen sind, der Gewinn geschmadlert, oder es wird von schlichtweg
unrealistischen Marktbedingungen, wie z.B. unendlich groes Angebot oder Nachfrage, ausgegangen.
Die Autoren verweisen in ihrer Kritik an anderen Strategien auf einen Artikel namens ,,Replicating An-
omalies® [[18]], der 2018 in ,,The Review of Financial Studies* erschienen ist.

Am Aktienmarkt konnen nicht nur einfache Aktien gehandelt werden. Es gibt unter anderem auch die
Moglichkeit mit Optionen zu handeln. Eine Option bedeutet im Grunde, dass sich der Anleger vertraglich
zusichert, zu einem spiteren Zeitpunkt zu einem gewissen Kurs zu kaufen bzw. zu verkaufen. Dabei
wird entweder auf steigende oder auf fallende Kurse gesetzt. In vielen auch akademisch entwickelten
Strategien wird laut [[18]] von einem unendlichen Angebot an Optionsscheinen ausgegangen, was der
Realitit aber keinesfalls entspricht.

Die Konservative Formel setzt auf eine ,,Long-only* Strategie. Das bedeutet, dass keine Optionen
gehandelt werden und Aktien auf herkommliche Art gekauft und zu einem spéteren Zeitpunkt, sofern
gewisse strategische Rahmenbedingungen zutreffen, wieder verkauft werden.

2.2 Verwendete Indikatoren

Bevor die Konservative Formel im Detail weiter erldutert werden kann, miissen einige Indikatoren, die
darin verwendet werden, erklirt werden:

Marktkapitalisierung [4]

Die Marktkapitalisierung beschreibt den Wert, den ein Unternehmen aktuell auf dem Aktienmarkt hat
(Borsenwert). Dieser berechnet sich aus dem Aktienpreis x in der jeweiligen Wiahrung, multipliziert mit

der absoluten Anzahl an Aktien y. Somit ergibt sich die Marktkapitalisierung M aus M = x * y.
Hat also ein Unternehmen z.B. 1000 Aktien am Markt, die aktuell um 5 $ pro Stiick gehandelt
werden, ergibt die Berechnung der Marktkapitalisierung einen Borsenwert von 5000 $.

Volatilitit [6]

Unter Volatilitdt versteht man die Schwankungsbreite eines Aktienkurses. Berechnet wird sie mithilfe
der Standardabweichung der Kursverinderungen.

In der Konservativen Formel wird die Volatilitdt basierend auf den letzten 36 Monaten der tdglichen
Kursdnderung berechnet. Je kleiner die resultierende Volatilitit, umso stabiler war der Kursverlauf der
Aktie im betrachteten Zeitraum.

Beispiele der Berechnung einer 3-Tage Volatilitit fiktiver Aktienkurse sind in Tabelle|2.1|dargestellt:

Aktie \ Tag 1 \ Tag 2 \ Verianderung 2:1 \ Tag 3 \ Veranderung 3:2 \ Volatilitat ‘
Aktie1 | 100$ | 120 $ 1.2 144 $ 1.2 o([1.2,1.2]))=0
Aktie2 | 100$ | 1103 1.1 929 $ 0.9 o([1.1,0.9])) =0.1
Aktie3 | 100$ | 100 $ 1 200 % 2 o([1,2])=0.5
Aktie4 | 100$ | 500 $ 5 50% 0.1 o([5,0.1]) =2.45

Tabelle 2.1: Beispiel fiir Berechnung der Volatilitét

Momentum [5]]

Als Momentum bezeichnet man die Verdanderungsrate einer Aktie iiber einen gewissen Zeitraum. Bei dem
Beispiel zur Berechnung der Volatilitit in Tabelle 2.1 wurde bereits das Momentum iiber einzelne Tage
berechnet. Die Formel zur Berechnung des Momentums im Zeitraum eines Jahres lautet kurz M = x /vy,
wobei M das Momentum, x der momentane Aktienkurs und y der Aktienkurs von vor einem Jahr ist.

Ein Kursverlauf von 100 $ am 1. Januar 2020 auf 120 $ am 1. Januar 2021 resultiert nach dieser
Formel also beispielsweise in einem Momentum von 1.2.

Nettoauszahlungsrendite [36]

Die Nettoauszahlungsrendite, englisch Net Payout Yield oder auch Total Yield, ist die Summe der Riick-
kaufrendite und der Dividendenrendite, welche in den folgenden Absitzen erklirt werden.

Riickkaufrendite [13]

Die Riickkaufrendite sagt aus, wie viele eigene Aktien von einer Aktiengesellschaft zuriickgekauft wer-
den. Die Formel zur Berechnung der Riickkaufrendite gestaltet sich folgendermalen: R = x * k/y * 100,
wobei R die resultierende Riickkaufrendite in % ist, x die Anzahl an zuriickgekauften Aktien, k& der Kurs
zum Zeitpunkt des Riickkaufes in der jeweiligen Wahrung, und y die Marktkapitalisierung darstellt. Es
werden dabei nur Riickk#dufe betrachtet, die in einem definierten Zeitraum, z.B. zwei Jahre, liegen.

Somit hat ein Unternehmen, das vor zwei Jahren 100 Anteile am Markt hatte, innerhalb dieser zwei
Jahre 10 Aktien zu einem Preis von je 10 $ von Anlegern zuriickgekauft hat, 100 $ an eigenen Aktien
zuriickgekauft. Die Riickkaufrendite berechnet sich nun mithilfe der Marktkapitalisierung des Unterneh-
mens, nehmen wir dafiir 1000 $ an. Somit ergibt sich eine Riickkaufrendite von 10%. In die Formel
eingesetzt sieht das so aus: (10Stk. x 10%)/1000$ x 100 = 10%.

Die Riickkaufrendite kann auch negativ sein. In diesem Fall hat die Aktiengesellschaft neue Anteile
auf dem Markt zum Verkauf angeboten. Griinde dafiir konnen vielseitig sein, meist wird neues Geld von
Investoren benotigt.

Dividendenrendite [20]

Die Dividendenrendite beschreibt, wie viel an Dividende ein Unternehmen seinen Anleger:innen in Re-
lation zum Aktienkurs ausgezahlt hat. Dividenden sind Gewinnausschiittungen, die direkt an die Betei-
ligten der Aktiengesellschaft, den Aktionér:innen, gehen. Berechnet wird die Dividendenrendite durch
den Anteil, der innerhalb des letzten Jahres an die Anleger:innen ausgeschiittet wurde zum aktuellen
Preis der Aktie. Die Formel lautet also D = z/y * 100, wobei D die Dividendenrendite in % ist, die
Summe des ausgeschiitteten Gewinns innerhalb des letzten Jahres pro Aktie und y den aktuellen Kurs
der Aktie darstellt.

Eine Aktiengesellschaft, die im letzten Jahr 1 $ pro Aktie an Dividende ausgezahlt hat und deren
Kurs momentan bei 10 $ liegt, hat somit eine Dividendenrendite von 10%.

Die Dividendenrendite kann nur positive Zahlen annehmen, weil es negative Dividendenauszahlun-
gen nicht gibt. Im geringsten Fall ist die Dividendenrendite also gleich 0, was bedeutet, dass im beob-
achteten Zeitraum keine Dividende ausgezahlt wurde.

2.3 Interpretation der Indikatoren

Die vorgestellten Indikatoren beschreiben unterschiedliche Eigenschaften eines Aktienkurses bzw. einer
Aktiengesellschaft. Wie diese in der Konservativen Formel interpretiert werden, wird in den folgenden
Absitzen geklart:

Marktkapitalisierung

Marktkapitalisierung driickt den Borsenwert einer Aktiengesellschaft aus. Ein groBBer Borsenwert l&sst
auf ein grofles Unternehmen schliefen, was tendenziell eine sicherere Investition darstellt.

In der Konservativen Formel werden bei der Erstellung des Portfolios ausschlieBlich Aktien aus den
nach Marktkapitalisierung gréten 1000 beriicksichtigt.

Volatilitat

Volatilitidt wird primér als Indikator fiir das Risiko einer Aktie verwendet. Hohe Volatilitét steht fiir grof3e
Kursschwankungen und damit verbunden eine grofere Unsicherheit und somit auch ein groeres Risiko.
Es werden somit in der Konservativen Formel nur Aktien mit geringer Volatilitit im Verlauf der
letzten drei Jahren beriicksichtigt. Auch wenn historische Volatilitédt nicht zwangsweise ein Indikator fiir
die zukiinftige Volatilitédt sein muss, zeigen die Ergebnisse von Blitz und Van Vliet [2]], siche dazu auch
Kapitel [2.5] dass historische Volatilitit eine gewisse Aussagekraft iiber zukiinftige Volatilitit besitzt.

Momentum

In der Konservativen Formel wird das 12 - 1 Monate Momentum verwendet, das heifit, der aktuelle
Kurs wird mit dem Kurs von vor einem Jahr verglichen. Hier gilt in der resultierenden Strategie, dass
ein grofleres Momentum besser ist, weil dadurch der Aktienkurs gro3e Gewinne verbucht hat und eine
Fortsetzung dieses Trends erwartet wird.

Riickkaufrendite [35]]

In der Konservativen Formel wird bei der Berechnung der Riickkaufrendite der Zeitrahmen der letzten
zwei Jahre beriicksichtigt.

Laut der Konservativen Formel ist eine hohe Riickkaufrendite gut, ob aber jeder Aktienriickkauf aus-
schlieBlich positive Folgen hat, ist, wie z.B. der Artikel [35]] zeigt, umstritten. Oft werden durch grofere
Riickkéufe beispielsweise die Kurse in die Hohe getrieben, was das Unternehmen iiberdurchschnittlich
viel fiir seine eigenen Anteile bezahlen lédsst. Es kann aber auch sein, dass die Aktiengesellschaft ihre
Anteile iiber Kredite zuriickkauft, um einer Ubernahme entgegenzuwirken und die Folgen erst bei Fil-
ligkeit dieser Kredite ersichtlich werden. Eine {iberdurchschnittlich hohe Riickkaufrendite kann zudem

auch negativ interpretiert werden, wenn die Aktiengesellschaft keine Investitionsmoglichkeiten in ih-
rem eigentlichen Kerngeschift sieht, daher viele eigene Aktien zuriickkauft und in Folge der fehlenden
Investitionen in Zukunft weniger Wachstum aufweisen wird als vergleichbare Unternehmen mit einer
geringeren Riickkaufrendite.

Als positive Aspekte einer hohen Riickkaufrendite sind anzufiihren, dass Aktienriickkdufe norma-
lerweise den Kurs stabilisieren und die zukiinftigen Gewinne auf weniger Aktiondre verteilt werden
miissen, was zu einer besseren Dividendenrendite fithren kann.

Dividendenrendite

Eine hohe Dividendenrendite bedeutet eine hohe Ausschiittung an Dividende an die Anleger:innen. Somit
wird in der Konservativen Formel eine hohe Dividendenrendite positiv interpretiert.

Nettoauszahlungsrendite

Die Nettoauszahlungsrendite wird, weil Dividendenrendite und Riickkaufrendite positiv interpretiert
werden, ebenfalls positiv interpretiert. Somit ist es in der Konservativen Formel wahrscheinlich, dass
Aktiengesellschaften mit hoher Nettoauszahlungsrendite im Portfolio landen.

2.4 Die Strategie

Hier kann mit der Erkldrung der Konservativen Formel fortgesetzt und, da nun die benétigten Indikatoren
sowie deren Interpretation vorgestellt wurden, die eigentliche Strategie erklart werden.

Bei der Konservativen Formel handelt es sich um eine Portfoliomanagement Strategie. Das bedeutet,
dass in ein Portfolio bestehend aus mehreren Aktien investiert wird. Der Sinn eines Portfolios gegeniiber
Einzelaktien liegt darin, das Risiko zu streuen und somit weniger abhéngig gegeniiber einzelnen Kurs-
schwankungen zu sein. Mehr Informationen iiber Streuung, auch Diversifikation genannt, findet man
beispielsweise in ,,Equity Portfolio Diversification®, erschienen im Journal ,,Review of Finance* [[15]].

Die Konservative Formel setzt auf ein Portfolio von insgesamt 100 verschiedenen Aktien. In diese
100 Aktien wird der zu investierende Betrag gleichmifBig gewichtet aufgeteilt und investiert. Um die 100
gewiinschten Aktien zu eruieren wird nun folgendes Prozedere durchgefiihrt:

1. Das gesamte Universum von bekannten Aktien, die ldnger als drei Jahre an der Borse sind, wird
betrachtet.

2. Die Marktkapitalisierung dieser bekannten Aktien wird berechnet und das Universum wird auf
jene 1000, mit der groften Marktkapitalisierung, reduziert.

3. Die Volatilitdt der letzten drei Jahre von jeder der 1000 Aktien wird berechnet. Die Resultate
werden aufsteigend sortiert und es werden von nun an blof3 die 500 Aktien, mit geringer Volatilitét
betrachtet.

4. Das 12 - 1 Monate Momentum jeder einzelnen dieser 500 Aktien wird berechnet. Nach dieser Be-
rechnung wird absteigend sortiert und jeder Aktie wird der Rang nach dieser Sortierung zugewie-
sen. Die Aktie mit dem groften Momentum bekommt den Rang 1, die Aktie mit dem geringsten
Momentum den Rang 500.

5. Die Nettoauszahlungsrendite jeder einzelnen Aktie aus dem Universum von 500 Stiick wird be-
rechnet. Nun wird dasselbe Bewertungsschema wie bei dem Momentum angewendet: Absteigend
sortieren und einen Rang zuweisen.

6. Esresultiert eine Liste von 500 Aktien, denen jeweils zwei verschiedene Bewertungs-Platzierungen
zugewiesen wurden. Die finale Bewertung wird aus dem Durchschnitt dieser Platzierungen berech-
net. Eine Aktie, die in der Reihung nach Momentum auf Rang 13 liegt und bei der Reihung nach
Nettoauszahlungsrendite auf Rang 15 liegt, bekommt als finale Bewertung eine 14 zugewiesen.

Diese 14 bedeutet aber nicht, dass diese Aktie am Ende auch den 14. Rang belegt, es ist lediglich
die finale Bewertung.

7. Nach dieser finalen Bewertung werden die 500 Aktien aufsteigend sortiert. Als gewiinschtes Port-
folio werden nun die besten 100 Aktien, mit der niedrigsten finalen Bewertung, ausgewihlt.

Jetzt muss in diese 100 resultierende Aktien noch anndhernd gleich verteilt investiert werden. Dieser
Bewertungsprozess wird jedes Quartal, also alle drei Monate, wiederholt und das bestehende Portfolio
auf das neue Ergebnis angepasst. [2]]

Wir sehen also, dass von keinerlei unrealistischen Marktbedingungen wie unbegrenzte Verfiigbarkeit
von Optionsscheinen oder dhnlichem ausgegangen wird. Somit haben die Entwickler dieser Strategie mit
ihrer Behauptung, eine realistisch umsetzbare Strategie entwickelt zu haben, recht.

2.5 Ergebnisse der Konservativen Formel

Value of $100 Invested in 1929
$100,000,000

$10,000,000
$1,000,000
$100,000
$10,000
$1,000
$100

$10

1929 1949 1969 1989 2009

Conservative Market Speculative ‘

Abbildung 2.1: Entwicklung von 1929 bis 2016 [2]]

Die Ergebnisse der Konservativen Formel sehen folgendermaBlen aus: der amerikanische Aktien-
markt stieg im Zeitraum von 1929 bis einschliellich 2016 im Durchschnitt um 10,6% pro Jahr. Wenn in
dieser Periode durchgehend gleich verteilt in den Markt investiert worden wére, hitte der Markt unter Be-
riicksichtigung des Zinseszins-Effekts eine Steigerung von rund 9,3% pro Jahr erfahren. Eine Investition
von 100 $ im Jahre 1929 hitte, laut den Autoren der Konservativen Formel [2]], inklusive Zinseszinsen
im Jahre 2016 rund 246,000 $ ergeben.

Das Portfolio der Konservative Formel hingegen erbrachte im gleichen Zeitraum einen durchschnitt-
lichen Erfolg von 15,5% pro Jahr. Uber den gesamten Zeitraum, abermals unter Beriicksichtigung des
Zinseszins-Effekts, betrug der Erfolg 15,1% pro Jahr. Das ist deutlich ndher am durchschnittlichen Jah-
reserfolg, was bedeutet, dass die Erfolge iiber die Jahre weniger Schwankung aufwiesen als der Markt.
Um es wieder durch die 100 $ Investition im Jahre 1929 bis 2016 auszudriicken: aus 100 $ die nach
dieser Strategie 1929 angelegt worden wiren, wiren 2016 rund 20 Mio. $ geworden.

Diese Ergebnisse wurden allerdings ohne Steuern und Gebiihren berechnet, somit wire in der Realitit
der Zinseszins-Effekt viel abgeschwéchter. Selbiges gilt auch fiir das Beispiel des Markts.

In der Arbeit von Blitz und Van Vliet [2]] wurde ebenfalls mit einem sogenannten ,,spekulativem*
Portfolio verglichen. Dabei wurde die gleiche Berechnung wie bei der konservativen Formel durchge-
fiihrt, mit dem Unterschied, dass die volatilere Hilfte betrachtet wurde und von diesen in die schlechtes-
ten anhand der Reihung nach Momentum und Nettoauszahlungsrendite investiert wurde. Dieses speku-
lative Portfolio entwickelte sich deutlich schlechter als der Markt, mit einem Erfolg von bloff 2.1% im
gleichen Zeitraum unter Beriicksichtigung des Zinseszins-Effekts. Der Vergleich der Entwicklung des

7

spekulativen Portfolios mit dem optimalen Portfolio laut Strategie zeigt, dass die Formel eine Aussage-
kraft besitzt.

Eine weitere Anmerkung zu den Ergebnissen ist die Inflationsrate in den USA im betrachteten Zeit-
raum von 1929 bis 2016. Diese ist in den oben genannten Beispielen namlich auch nicht beriicksichtigt
worden. 100 $ aus dem Jahr 1929 entsprechen einer Kaufkraft von rund 1400 $ im Jahre 2016 [7]. So-
mit konnen die 100 $ von 1929 nicht direkt mit den 246,000 oder 20 Mio. $ im Jahre 2016 verglichen
werden. Es ist aber dennoch ersichtlich, dass ein enormer Erfolg erzielt worden wiire.

Abbildung[2.1] veranschaulicht die Ergebnisse der Konservativen Formel im Vergleich zur Marktent-
wicklung und der Entwicklung des spekulativen Portfolios. Interessant ist, dass das spekulative Portfolio
inflationsbereinigt am Ende des Betrachtungszeitraums weniger Kaufkraft aufweist als zu Beginn der
Investition.

Kapitel 3

Programmarchitektur und Design

Ziel dieser Arbeit ist nun die Implementierung eines Programms. das die vorgestellte Strategie automati-
siert umsetzt. Bevor mit der Entwicklung gestartet werden kann, muss ein Plan erstellt werden. In diesem
Kapitel wird mithilfe von UML Diagrammen die Architektur und Funktionsweise des Programms erklért.
Weiters wird die Datenbank und die persistente Datenspeicherung in tabellarischer Form erldutert.

3.1 UML Diagramme

UML Diagramme sind ein bewihrtes Konzept um Programmarchitekturen und -fliisse zu beschreiben.
UML ist ein Akronym fiir Unified Modeling Language, zu Deutsch vereinheitliche Modellierungsspra-
che. Dabei handelt es sich um eine Standardsprache, die unter anderem zur Analyse und zum Design
objektorientierter Anwendungen verwendet wird. Es gibt mehrere verschiedene Diagrammtypen, die
jeweils unterschiedliche Schwerpunkte haben und so verschiedene Aspekte einer Software besser mo-
dellieren konnen. In diesem Kapitel werden das Klassen- und Aktivititsdiagramm verwendet. Mithilfe
dieser zwei Diagramme kann bereits ein relativ umfangreicher Einblick in die Architektur und Funkti-
onsweise des resultierenden Programms gegeben werden. [19]]

Klassendiagramm

Ein Klassendiagramm ist niitzlich zur Modellierung von Beziehungen der unterschiedlichen Programm-
klassen und deren Objekte. Es ist hilfreich, um den logischen Aufbau bzw. die Architektur eines Systems
zu verstehen.

Die Funktionsweise und Vorteile von objektorientierter Programmierung genauer vorzustellen wiirde
den Rahmen dieser Arbeit sprengen, daher werden in den folgenden Zeilen blof} die Grundkonzepte
kurz erldutert. Im Prinzip ist jede Klasse eine Vorlage fiir Objekte. Ein Objekt ist eine Instanz einer
Klasse, wobei jede Klasse normalerweise durch beliebig viele Objekte instantiiert werden kann. Jedes
Objekt einer gewissen Klasse enthilt genau die Attribute (Variablen) und die verfiigbaren Funktionen
(Methoden) die in der Klasse spezifiziert wurden. So kénnen gewisse Funktionsweisen eines Programms
besser abstrahiert und mithilfe eigener Klassen abgebildet werden. Im UML Diagramm findet man im
oberen Teil einer modellierten Klasse die Attribute und im unteren Teil die Methoden. Beziehungen
zwischen Klassen werden mit Linien gekennzeichnet.

In vielen Softwarearchitekturen findet man komplexe Beziehungen und Vererbungen zwischen Klas-
sen vor, in der Implementierung dieser Arbeit wurde jedoch die Architektur sinngeméaf relativ einfach
gehalten. Es existiert eine Main Klasse, die fiir die Durchfithrung der Gesamtlogik und Verteilung der
Aufgaben verantwortlich ist. Diese Main Klasse wird beim Ausfithren des Programms blof ein einzi-
ges Mal als Objekt instantiiert. Durch das Aufrufen der run() Methode des Main Objekts wird dann der
gesamte Programmablauf gestartet. Das Main Objekt besitzt eine Referenz auf drei verschiedene Klas-
sen: den Datafetcher, Alerter und das Portfolio. Diese Klassen werden ebenfalls bloB ein einziges Mal
instantiiert. Die Aufgaben, die diese Klassen jeweils erfiillen, sind unterschiedlicher Natur:

DataFetcher

- logger: Logger

alpaca-trade-api

N

————————— benutzt- —————--——
i

Main

- logger: Logger
- portfolio_path: String
- rating_path: String
- connection: SQLite Connection
- cursor: SQLite Cursor

yfinance

N

—————————— benutzt

Portfolio

- logger: Logger
- portfolio_path: String
- rating_path: String

1.1 1.1 1.1
+ get_tradable_symbols(): Dataframe 11
+ get_market_cap(dataframe): Dataframe | 0 1.1
+ get_net_payout_yield(dataframe): *+run
genep [))latafﬁ/ame() - update_db() _ o
+ get_3y_vola(dataframe): Dataframe - fetch_next_quarter_year(): String + calculate_portfolio(name_of_rating:
- momentum_helper(symbol: String): - get_next_rebalancing_date(): Datetime String): Dataframe
~ Float - calculate_portfolio(quarter_year: String) + rebalance(name_of_portfolio:String)
- vola_helper(symbol: String): Float - calculate_rating(quarter_year: String - last_price_helper(symbol: String): Float
- - handle_error(exception: Exception)
[! |
—————————————— lest von- - Iestlvon |
| I }
{ i !
___________________ |
V |
" I
config |
I
1.1 |
- + ALPACA_API_KEY: String |
Alerter + ALPACA_SECRET_KEY: String |
+ ALPACA_BASE_URL: String }
- - + IEX_API_KEY: String)
logger: Logger L~ -lest von- — — > + IEX_BASE_URL: String [<-———————- lestvon — —————

+ send_message(message: String)

+ GURU_URL: String
+ TELEGRAM_TOKEN: String
+ TELEGRAM_OWNER_ID: String
+ TELEGRAM_BASE_URL: String
+ MAX_POS_THRESHOLD: Float

Abbildung 3.1: UML Klassendiagramm der Implementierung

e DataFetcher:

Diese Klasse ist dafiir zustidndig, die benotigten Daten von externen APIs (Programmschnittstel-
len) zu holen. Die Hauptaufgabe liegt in der Berechnung fiir die neue Bewertung der Aktien.

¢ Portfolio:

Diese Klasse deckt die vollstandige Funktionsweise ab, die bendtigt wird, um einen Portfoliovor-
schlag basierend auf dem Rating zu erstellen und sodann auch mithilfe des verwendeten Brokers

umzusetzen.

e Alerter:

Der Alerter dient dazu, Nachrichten, die wichtige Informationen {iber den Zustand des Programms
enthalten, iiber einen Telegram Bot zu senden.

Weiters existiert eine config Datei, die wichtige Konfigurationen wie beispielsweise URLs oder Keys, die
fiir den Zugriff auf externe APIs notig sind, enthélt. Diese Informationen sind fiir alle Klassen zugédnglich
und konnen gelesen werden. Der Sinn, diese Informationen in einer eigenen Datei auszulagern, ist der,
dass man diese, wenn notig, an einer zentralen Stelle schnell adaptieren kann.

Die extern verwendeten APIs, welche eine eigene verwendbare Bibliothek anbieten, werden im Klas-
sendiagramm ebenfalls als Schnittstellen modelliert, wobei aber auf die Modellierung der Attribute und
Funktionen aufgrund ihres grolen Umfangs verzichtet wird. Die verwendeten Bibliotheken werden in

Kapitel 4.3]im Detail einzeln niher erklirt.

Das resultierende Klassendiagramm kann in Abbildung[3.T|nachgelesen werden.

10

Initialisiere
Datenbank
falls nicht

existent

S

Markiere
diesen Termin Richte Berechne
in der Portfolio neu neues
Datenbank als aus Portfolio
durchgefiihrt
Lese
Datenbank /%
Warte bis
Aktienmarkt
offen ist
Leer/Alle Eintrage als durchgefiihrt markiert
Schreibe Berechne
Ein Eintrag als nicht durchgefiihrt markiert neuen Termin .
} neues Rating
in Datenbank
A
/

Berechne
néachsten Warte bis zu
Termin fiir diesem
Portfolio Termin
Neuausrichtung

Lese nicht

durchgefiihrten
Eintrag aus
Datenbank

Abbildung 3.2: UML Aktivitdtsdiagramm der Implementierung

Aktivitatsdiagramm

Ein Aktivititsdiagramm beschreibt, wie der Name bereits vermuten ldsst, die Aktivititen, die ein Pro-
gramm durchfiihrt. Es ist niitzlich, um einen Uberblick iiber den Programmfluss zu bekommen. In der
fertigen Implementierung gibt es natiirlich viele verschiedene Szenarien, die man mithilfe eines Akti-
vitdtsdiagramms beschreiben konnte. Dabei konnte auch beliebig tief ins Detail gegangen werden. Ziel
des Aktivititsdiagramms in dieser Phase der Projektbeschreibung ist aber nicht, Entscheidungen des
Programms auf unterster Ebene zu modellieren, sondern die Funktionsweise des Gesamtablaufs zu mo-
dellieren.

Aktivitdatsdiagramme sind relativ einfach zu lesen, wodurch auf eine detaillierte Erkldrung verzichtet
wird. Der schwarze Punkt ist der Startpunkt und die Vierecke mit Text sind einzelne Aktivititen. Bei den
kleineren Rauten handelt es sich um Verzweigungen/Zusammenfiihrungen, die den Programmfluss fiir
unterschiedliche Zustinde modellieren. Aktivitdtsdiagramme besitzen meist noch mehr Elemente, die
aber fiir die Zwecke dieser Modellierung nicht erforderlich sind.

Das resultierende Aktivititsdiagramm ist in Abbildung [3.2]dargestellt.

3.2 Datenstruktur

Die folgenden Absitze erkldren die verwendete Struktur der Datenbank und der tabellarischen Speiche-
rung.

Datenbank

Die Datenbankplanung ist sehr simpel gehalten, weil sie im Grunde blof} eine Funktion erfiillt: die Spei-
cherung der Termine, an denen das Portfolio neu ausgerichtet wird.

11

Im Grunde hitte man fiir diese simple Funktionsweise auf eine Datenbank verzichten konnen, im
Falle von Erweiterungen ist aber eine bereits vorhandene Datenbank hilfreich.

Die Datenbank enthilt eine Tabelle, die folgende Struktur aufweist: Eine Spalte mit Textwerten fiir
das Quartal und Jahr, in dem das Portfolio neu ausgerichtet werden muss, bzw. worden ist. Eine zweite
Spalte, die angibt, ob das Portfolio an diesem Termin bereits neu ausgerichtet worden ist. Ein Beispiel
wie diese Tabelle zum Stand April 2021 ausgesehen hat, findet man in Tabelle [3.1]

] quarter_year | rebalanced

Q3_2021 0
Q2 2021 1
Q1_2021 1

Tabelle 3.1: Datenbank Tabelle fiir Neuausrichtungstermine

Tabellarisch

Es gibt alternativ zu Datenbanken auch andere Methoden um Daten in tabellarischer Form speichern bzw.
verwenden zu konnen. Dabei geht aber meist der Vorteil von Datenbanken, Relationen zwischen Eintrige
verschiedener Tabellen effizient abbilden und abfragen zu konnen, verloren. Im Gegenzug dazu sind
aber alternative Methoden oftmals leichter umzusetzen und fiir kleinere Projekte durchaus ausreichend.
Eine Methode, die in diesem Projekt verwendet wird, ist die Speicherung als .csv Datei. Dabei sind
die Eintrdge der Tabellen in jeweils einer neuen Zeile gespeichert, wobei die einzelnen Spalten durch
Beistriche getrennt sind. Daher kommt auch der Name der Dateiendung .csv, kurz fiir comma-seperated-
values.

In diesem Programm werden tabellarische Datenstrukturen stindig verwendet, z.B. bei der Berech-
nung des Ratings oder beim Konstruieren des Portfolios. Das erleichtert die Programmierung um ein
Vielfaches. Zur Verwendung von tabellarischen Datenstrukturen, auch Dataframes genannt, wird die ex-
terne Bibliothek Pandas verwendet. Eine genauere Erklarung dazu findet man in Kapitel @4.3]

Das Format der verwendeten Tabellen ist unterschiedlich, ein Beispiel fiir einen Ausschnitt eines
fertig berechnetes Rating kann man in Tabelle[3.2] nachlesen.

| Symbol | Momentum | Market Cap | Volatility | Momentum Ranking |

AAPL 1.694016 | 2272940317440 | 0.022213725 15
GOOGL | 1.3833369 | 1414264082964 | 0.0195211 61
EBAY 1.7231048 42405380199 0.01921186 12

] Symbol \ NPY NPY Ranking Rating Final Ranking
AAPL 3.95 116 65.5 8
GOOGL 2.21 238 149.5 68
EBAY 12.96 2 7.0 1

Tabelle 3.2: Tabellarische Speicherung eines Ratings

12

Einen Ausschnitt eines fertigen Portfolios, fiir das ebenfalls ein Pandas Dataframe zur Speicherung
verwendet wird, findet man in Tabelle[3.3]

| Symbol | Price | Shares | Total

AAPL 134.81 8 1078.48
GOOGL | 2095.13 1 2095.13

EBAY 62.01 17 1054.17

Tabelle 3.3: Tabellarische Speicherung eines Portfolios

13

Kapitel 4

Implementierung

Nun zum Hauptteil, der Entwicklung des Programms.

Dieses Kapitel beschreibt die verwendete Programmiersprache Python, die in der Implementierung
verwendeten externen Bibliotheken, die Umsetzung der Datenspeicherung und die genaue Funktions-
weise der wichtigsten verwendeten Algorithmen.

Weiters wird erklart, wodurch im Programm verhindert wird, dass bei einem allfzlligen Auftreten von
externen oder internen Fehler bzw. Errors, das Programm instabil wird oder aber unbemerkt abstiirzt.

4.1 Python

Als Sprache zur Umsetzung wurde Python gewihlt. Bei Python handelt es sich um eine hohere Pro-
grammiersprache, die bereits ein sehr groles Level an Abstraktion beinhaltet. Das Ziel von Python ist,
einen gut lesbaren und verstidndlichen Programmcode zu erschaffen. Python wird im Gegensatz zu an-
deren bekannten Sprachen wie Java oder C nicht kompiliert, sondern zur Laufzeit von einem Interpreter
in Maschinencode umgewandelt. Das und die Eigenschaft, bei Variablendeklarationen keinen konkre-
ten Typ angeben zu miissen, machen Python als Programmiersprache in der Laufzeit etwas langsamer
als kompilierte Sprachen. Diese schlechtere Performance wird aber durch die Einfachheit der Sprache
kompensiert. [32]

Python erfreut sich einer stark wachsenden Community und ist laut PYPL [31]] die beliebteste Pro-
grammiersprache 2021. Das war aber bei der Wahl der Programmiersprache fiir die Umsetzung dieses
Projektes nur nebensichlich. Der Hauptgrund, warum die Wahl auf Python fiel, wo auch Alternativen wie
beispielsweise Java die Aufgabe sehr gut erfiillt hitten, lag auf der Verfiigbarkeit der externen Biblio-
theken. Pandas, alpaca-trade-api und yfinance, welche in den folgenden Absitzen 4.3 noch vorgestellt
werden, kennen kaum vergleichbaren Alternativen in anderen Programmiersprachen.

Bei der Vorstellung der Implementierung wird von einem gewissen Grundverstindnis der Program-
mierung in Python ausgegangen. Auf die Erkldarung der Syntax und Semantik der Programmiersprache
wird in dieser Arbeit verzichtet.

4.2 API

In diesem Absatz muss fiir das weitere Verstindnis der Begriff API kurz geklédrt werden. API ist ei-
ne Abkiirzung fiir Application Programming Interface, zu Deutsch Programmierschnittstelle. Eine Pro-
grammierschnittstelle ermoglicht das Verbinden von Programmen, indem es eine Kommunikation zwi-
schen diesen ermdoglicht. Diese Kommunikation findet meist iiber HTTP statt. HTTP steht fiir HyperText
Transfer Protocol und wird im Web stiandig verwendet. [|10]]

Fiir dieses Projekt sind APIs vonnéten, um die bendtigten Daten zu den jeweiligen Aktien zu bekom-
men und um das resultierende Portfolio bei einem Broker abzubilden.

14

4.3 Verwendete Externe Bibliotheken

In den folgenden Absitzen werden die verwendeten externen Bibliotheken einzeln im Detail vorgestellt
und erklért, wofiir sie zur Umsetzung des gesamten Programms bendtigt werden.

Pandas

Pandas ist eine Bibliothek, die vor allem dafiir da ist, sogenannte Dataframes als Datenstruktur anzu-
bieten. Diese Dataframes sind eine tabellarische Datenstruktur und erfiillen die Aufgaben, die in Absatz
[3.2] vorgestellt wurden. Pandas bietet auerdem eine simple Moglichkeit an, diese Dataframes als .csv
Dateien persistent zu speichern und unkompliziert wieder zu laden. [29]

Weiters erleichtert Pandas die Manipulation der Daten in tabellarischer Form, was bei der Umsetzung
des in Absatz 4.6|erklirten Bewertungsalgorithmus von Vorteil ist.

Numpy

Numpy wird vor allem im Data Science und Machine Learning Bereich genutzt. Es bietet performante
Datenstrukturen wie Arrays und Matrizen. In diesem Projekt wird Numpy lediglich zur genaueren Be-
rechnung grofBerer Divisionen bzw. der Standardabweichung fiir eine Liste von Zahlen verwendet. [[22]]

Yahoo Finance API (yfinance)

Die Yahoo Finance API oder auch yfinance genannt ermdéglicht das Abrufen von Daten der Website
Yahoo Finanzen. Yahoo Finanzen bietet einen kostenlosen Zugang zu historischen Preisen von Akti-
en. Somit ist yfinance die verwendete Bibliothek, um mittels Programmcode an diese Daten zu kommen.
Diese Daten sind bei der Umsetzung der Konservativen Formel zur Berechnung des Momentums und der
Volatilitit erforderlich. Die Yahoo Finance API ist keine offiziell von Yahoo entwickelte Programmier-
schnittstelle, was bei der Implementierung zu gelegentlichen Problemen fithrte. Mehr dazu in Kapitel
52} [30]

Ein groBer Vorteil von yfinance fiir die Umsetzung dieses Projekt ist, dass die angefragten Daten
direkt als Pandas Dataframe, also in der gewiinschten tabellarischen Datenstruktur, retourniert werden.

Alpaca Trade API (alpaca-trade-api)

Diese Bibliothek ist zur einfachen Verwendung der Alpaca API entwickelt worden. Alpaca Markets
ist der Broker, der zur Abwicklung der Aktienkidufe verwendet wird. Es handelt sich dabei um einen
der wenigen Broker, die das Handeln mit virtuellem Geld, Paper Trading genannt, ermdglichen und
gleichzeitig auch eine gut dokumentierte API haben, auf die kostenlos zugegriffen werden kann. [21]]

Die Bibliothek alpaca-trade-api bietet nun eine Vereinfachung der API, indem sie die Funktionen der
Alpaca Markets API in Python direkt verfiigbar macht und aufwéndige Prozesse wie Authentifizierung
der Anfragen an die API und Kodierung der Daten in ein passendes Format iibernimmt. [[26]]

requests

Requests ermoglicht HTTP requests in Python zu senden.

Das wird bendtigt, um externe APIs verwenden zu kénnen, die keine eigene Bibliothek haben, um
deren Funktionsweise in Python abstrahiert verfiigbar zu machen.

Im Projekt werden nahezu alle requests aber nicht iiber die requests Bibliothek gesendet, sondern
iber aiohttp, welche eine asynchrone Durchfithrung von requests ermoglicht. Dazu wird noch niher
eingegangen werden.

Zur Umsetzung der Konservativen Formel sind bereits die historischen Preisdaten und die Abwick-
lung der Kéufe und Verkiufe durch die vorher vorgestellten Bibliotheken abgedeckt. Es fehlen noch
APIs, die die Marktkapitalisierung und Nettoauszahlungsrendite einer Aktiengesellschaft liefern.

15

Fiir die Marktkapitalisierung wird iiber HTTP eine Anfrage an IEX Cloud [9] gesendet. Dabei sind
50.000 Anfragen pro Monat an diese API kostenlos verfiigbar, was fiir die Zwecke dieses Projekts mehr
als ausreichend ist.

Fiir die Nettoauszahlungsrendite muss, weil kein anderer erschwinglicher Anbieter gefunden werden
konnte, eine Website maschinell ausgelesen werden. Mehr dazu in der Vorstellung von beautifulsoup4.

beautifulsoup4

[]UfoUCUS tome [EITLCERd Gurus Insiders Market Articles Subscribe Login Support Tutorials (@

[a) 1y Portiolios + gl My Gurus

Summary 30-Y Financials Guru Trades Analysis DCF Interactive Chart Dividend Insider OQwnership Data Headlines FilingWiz™ Checklist Definitions

Set As Default | Switch tn'm

—_— Apple Total Payout Yield %|: 3.98 (As of Today)

View and export this data going back teo 198B0. Start your Free Trial

Fundamental
Total Payout Yield % is the percent a company has paid to its shareholders through net repurchases of shares and dividends based on its Market Cap. It is a measure of shareholder return.

- Valuation Ratio Apple’s current Total Payout Yield % is(3.98%

— AssetTumover

— Buyback Yield %

Apple Total Payout Yield % Historical Data Download
— Capexto-Revenue

* All numbers are in millions except for per share data and ratio. All numbers are indicated in the company's associated stock exchange curency. * Premium members only.
— (Cash Conversion Cycle

— Cash-lo-Debt
— COGSHo-Revenue
— Current Ralio

GuruFocus Premium Membership

— Days Inventory
— Days Payable is required to see the charts and financial data here
— Days Sales Outstanding

— Debtto-Asset

Try It Free

— Debt-to-EBITDA

— Debt-to-Equity

— Debt-to-Revenue

— Earnings Yield %

— Eamings Yield (Joel
Greenblatt) %

— Effective Interest Rate on
ebt %

Apple Annual Data

L Equity-to-Asset

| Sep11 Sep12 Sep13 Sep14 Sep15 Sep16 Sep17 Sep18 Sep19 Sep20

— EV-o-EBIT

| Total Payout Yield % Premium WMember Only Premium Member Only Premium Member Only Premium Member Only Premium Member Only 686 571 799 806 435

— EV-0-EBITDA

l* EV-o-Revenue

— Forward PE Ratio Mar16 Jun16 Sep16 Decl6 Mar17 Jun1? Sep

— Forward Rate of Return Total Payout Yield % Premium Member Only Premium Member Only Premium Member Only Premium Member Only Premium Member Only Premium Member Only Premium Member O
(Yackiman) %

| < >
— Goodwill-to-Asset
|

Abbildung 4.1: Nettoauszahlungsrendite von Apple auf gurufocus.com [16]

Diese Bibliothek ermdglicht das Filtern von Daten von einer HTML Website, sodass aus den vielen
Elementen des Quellcodes einer Website die gewiinschte Information heraus gelesen werden kann. [28]]

Fiir dieses Projekt wird beautifulsoup4 zum Beschaffen der Daten zur Nettoauszahlungsrendite ver-
wendet. Dazu werden gewisse Endpunkte der Website https://www.gurufocus.com geladen
und in Folge die gewiinschte Information extrahiert. [[16]]

Mochte man zum Beispiel die Nettoauszahlungsrendite fiir Apple herausfinden, so wird die URL |ht
tps://www.gurufocus.com/term/TotalPayoutYield/aapl/|aufgerufen. Das Resultat
kann man in Abbildung@.T|nachlesen. Dabei ist die gewiinschte Information in Blau geschrieben relativ
weit oben in der Mitte zu finden, in der Abbildung ist sie mit einem roten Viereck umrandet. Um diese
Information aus dem Quelltext der Website auszulesen, ist beatifulsoup4 das richtige Werkzeug. Dabei
muss eine Eigenschaft gefunden werden, die genau auf und nur auf diese Information passt. In diesem
Fall ist die Nettoauszahlungsrendite die einzige Information die auf dieser Website von einem strong tag
(3.98%) umgeben ist und innerhalb dieses strong tags auch ein ,,%* vorkommt. Genau

16

https://www.gurufocus.com
https://www.gurufocus.com/term/TotalPayoutYield/aapl/
https://www.gurufocus.com/term/TotalPayoutYield/aapl/

genommen extrahieren wir hierbei nicht den blau gedruckten Text, sondern den fett gedruckten Text,
der einen Absatz darunter zu finden ist. Dieser ist in der Abbildung mit einem runden, roten Rechteck
markiert. Die enthaltene Information ist aber dieselbe.

So sieht diese beschriebene Extraktion der Information aus der Website in Programmcode aus:

r = requests.get ("https://www.gurufocus.com/term/TotalPayoutYield/aapl/")
soup = BeautifulSoup(r, "html.parser’)
soup = soup.findAll ("strong")
for s in soup:
if %’ in s.next:
return float(s.next[:-1])
return numpy.NAN

Dieses Prozedere muss fiir jede einzelne Aktie durchgefiihrt werden, wobei selbstverstindlich der
URL jedes Mal ein anderer ist. Welche URL fiir welche Aktie aufzurufen ist, kann mit dem Kiirzel der
jeweiligen Aktie herausgefunden werden. Die Aktie von Apple hat beispielsweise ,,AAPL* als Abkiir-
zung, sodass die aufzurufende URL lautet: https://www.gurufocus.com/term/TotalPayo
utYield/aapl/| Sollte eine Aktie nicht auf gurufocus gefunden werden, so wiirde unser Programm
numpy.NAN zuriickgeben, was angibt, dass diese Aktie keine verfiigbaren Daten hat.

Wie man auf die einzelnen Kiirzel der jeweiligen Aktien kommt, wird in Kapitel 4.6 niher erklirt.

asyncio

Wie bereits beschrieben, miissen sehr viele Anfragen an externe APIs hintereinander gesendet werden.
Um diesen Prozess zu beschleunigen und nicht jede einzelne Anfrage iterativ durchfiihren zu miissen,
wird asyncio, eine Bibliothek die Asynchrone Programmierung in Python ermoglicht, verwendet.

Asyncio ermoglicht, mehrere Aufgaben parallel durchzufiihren und bei der Ausfiihrung der néchsten
Aufgabe nicht zwangsmaBig auf den Abschluss der Vorherigen warten zu miissen. [27]

aiohttp

Um nun HTTP requests asynchron zu senden, wird eine neue Bibliothek bendtigt, die asynchrone re-
quests unterstiitzt. Die urspriinglich vorgestellte requests Bibliothek kann fiir asynchrone Programmie-
rung nicht verwendet werden. Als Ersatz wird aiohttp verwendet. [25]]

Eine asynchrone Durchfiithrung von mehreren requests zur Ermittlung der Nettoauszahlungsrendite
sieht folgendermal3en aus:

symbols = ["AAPL", "GOOG", "EBAY", ..., "TSLA"]
results = []

async def fetch_one(url, session):
async with session.get (url) as response:
return await response.read()

async def fetch_all(symbol_list):
url = "https://www.gurufocus.com/term/TotalPayoutYield/{}/"
tasks = []
Fetch all responses within one Client session,
keep connection alive for all requests.
async with aiohttp.ClientSession() as session:
for s in symbols:
task = asyncio.ensure_future (
fetch_ one(
url.format (s.lower()),

17

https://www.gurufocus.com/term/TotalPayoutYield/aapl/
https://www.gurufocus.com/term/TotalPayoutYield/aapl/

session)

)
tasks.append (task)

responses = awalt asyncio.gather (xtasks)
for r in responses:
soup = BeautifulSoup(r, "html.parser’)
soup = soup.findAll ("strong")
found = False

for s in soup:
if %’ in s.next:

results.append(float (s.next[:-11))
found = True
break

if not found:
results.append (np.NAN)
loop = asyncio.get_event_loop ()
future = asyncio.ensure_future (fetch_all (symbols))
loop.run_until_complete (future)

return results

4.4 Persistente Datenspeicherung

Dieses Kapitel beschreibt kurz, welche Bibliotheken zur persistenten Datenspeicherung verwendet wer-
den.

Datenbank

Fiir die Datenbank wird sqlite3 verwendet. Dabei handelt es sich um eine Bibliothek, die das schnelle
Implementieren von Datenbanken ermdglicht. Sqlite3 ist bereits in Python als Standardbibliothek ent-
halten.

Um nun die Datenbank fiir dieses Projekt zu initialisieren wird folgender Code ausgefiihrt:

import sglite3
conn = sqglite3.connect ("rebalancing_dates.db"))
cursor = conn.cursor ()

cursor.execute ("""CREATE TABLE
IF NOT EXISTS
dates (
quarter_year text PRIMARY KEY NOT NULL,
rebalanced INTEGER
CHECK (rebalanced >= 0 AND rebalanced <= 1)
NOT NULL
)i

nmwn ")

conn.commit ()

Das erstellte cursor Objekt ermoglicht SQL Befehle auf der Datenbank auszufiihren. Da aber diese
Anderungen zu Beginn bloB auf diesem cursor Objekt existieren, miissen diese mittels unserer Verbin-
dung mit der Datenbank (conn Objekt) bestiitigt werden. Das passiert mit der commit() Methode des

18

conn Objekts. Erst nach dieser Bestitigung sind die tatséichlichen Anderungen auf der Datenbank sicht-
bar.

SQL ist eine Sprache zur Verwendung von Datenbanken. Auf die Erklidrung dieser Sprache wird in
dieser Arbeit verzichtet.

Tabellarisch, .csv

Zur tabellarischen Speicherung als .csv Dateien wird, wie bereits erwéhnt, die externe Bibliothek Pandas
verwendet.

Gespeicherte .csv Dateien kénnen folgendermal3en in das Programm geladen, ausgegeben und unter
anderem Namen als Kopie gespeichert werden:

import pandas as pd

rating = pd.read_csv("Ql_2021.csv")
print (rating)
rating.to_csv("Ql_2021_Kopie.csv", index=False)

Die Moglichkeit Dataframes problemlos als .csv Datei zu speichern und zu laden ist hilfreich, um
Datenverluste bei Stromausfille so gering wie mdglich zu halten. Mehr dazu in Kapitel

4.5 Alerter

Hier wird kurz die verwendete Alerter Klasse vorgestellt. Im Prinzip ermoglicht diese Klasse, Textnach-
richten iiber Telegram zu versenden. Telegram ist ein Messenger Service, vergleichbar mit Whatsapp.
Zum Versenden von Nachrichten mittels einem Bot muss zuerst ein Telegram Bot erstellt und dessen
ID vermerkt werden. Mittels dieser ID kann man nun iiber die Telegram API Nachrichten an beliebige
Personen iiber den erstellten Bot senden.

Der Alerter erfiillt bei der Implementierung einen simplen Zweck: Er soll iiber den Status des Pro-
gramms informieren. Wenn das Portfolio neu ausgerichtet wird, soll eine Nachricht gesendet werden.
Wenn ein Fehler passiert, den das Programm von alleine nicht beheben kann, soll der Programmierer
ebenfalls benachrichtigt werden. Der Programmcode, um eine Nachricht iiber den erstellten Bot zu sen-
den, sieht folgendermafen aus:

def send_message(self, message: str) —-> None:
url = self.base_url + self.token + \
' /sendMessage?chat_id=’ + self.owner + \
" &parse_mode=Markdown&text=" + message
requests.get (url)

Wie die bendtigten IDs von Benutzer und Bot herausgefunden werden kénnen, kann man in diesem
Artikel [17] nachlesen. Diese Klasse ist die einzige Art von User Interface, die bei Auftreten eines Fehlers
den Programmierer informiert. Informationen beziiglich der Entwicklung des Portfolios konnen direkt
beim Broker Alpaca Markets iiber dessen Website [21]] erlangt werden.

4.6 Bewertungsalgorithmus

Dieses Kapitel beschreibt das Prozedere, das fiir die Berechnung einer neuen Bewertung durchgefiihrt
wird.

19

Erstellen eines Universums an Aktien

Zu Beginn muss ein Universum an Aktien, die auch gehandelt werden konnen, erstellt werden. Das
passiert mittels der API unseres Brokers, alpca-trade-api:

symbols = alpaca_api.list_assets(status=’active’)

Dieser Programmcode liefert uns eine Liste von Symbolen. Es handelt sich hierbei um eigene Ob-
jekte, die unter anderem ein Attribut namens symbol haben. Das symbol Attribut eines Symbols ist
eine Abkiirzung, die jede Aktie eindeutig beschreibt. Zwecks Einfachheit werden alle Aktien der Liste
von nun an mithilfe dieses Kiirzels gespeichert, denn alle benétigten Tétigkeiten knnen mithilfe dieses
Kiirzels spéter durchgefiihrt werden. Apple besitzt beispielsweise das Kiirzel ,,AAPL*, d.h. es wiirde in
unserer fertigen Liste als AAPL aufscheinen.

Nun reicht es aber nicht, ein Universum von Aktien zu haben, die auch aktiv bei dem Broker ge-
handelt werden konnen, wir miissen ebenfalls Daten wie historische Preise und Marktkapitalisierung zu
diesen Aktien bekommen. Um die Aktien zu beseitigen, von denen wir diese Daten nicht bekommen,
rufen wir alle verfiigbaren Aktien auf, die der Plattform IEX Cloud bekannt sind. Das passiert mittels
simplem HTTP request:

iex_symbols = requests.get (config.IEX BASE_URL +
"ref-data/iex/symbols?token=" +
config.IEX_KEY)

Das Resultat dieser API Anfrage ist aber im JSON Format, deshalb muss die gewiinschten Informa-
tionen noch in eine normale Liste formatiert werden:

iex_symbols = [s[’symbol’] for s in iex_symbols]

Nun wird das Universum auf jene Aktien, die in beiden Listen vorkommen, reduziert. Weiters miissen
die Aktien entfernt werden, die per Definition keine direkten Aktien einer Aktiengesellschaft darstellen,
sondern selbst bereits eigene Fonds, Indizes, ETFs oder Ahnliches sind. Einzelfille, die manuell ausge-
nommen werden, sind GOOGL und LBTYK, weil diese Unternehmen mehrere unterschiedliche Arten
von Aktien anbieten, abhéngig davon, ob ein Stimmrecht bei deren Hauptversammlung existiert, oder
nicht. Im resultierenden Universum soll jedes Unternehmen bloB ein einziges Mal vorkommen, ansons-
ten konnte es passieren, dass in ein Unternehmen wie Google beispielsweise zweimal investiert werden
wiirde, was natiirlich nicht erwiinscht ist. Der Programmcode zur Reduktion des Universums an Aktien
nach den beschriebenen Kriterien sieht folgendermaflen aus:

symbols = [s.symbol for s in symbols if s.tradable
and not any (word.upper () in s.name for word in
["FUND", "ETF", "TRUST", "ETC", "ETN", "INDEX"])
and s.symbol in iex_symbols
and s.symbol != "GOOGL’
and s.symbol != "LBTYK']

Die finale Liste an Symbolen wird in einer tabellarischen Datenstruktur, einem Pandas Dataframe,
gespeichert.

df = pd.DataFrame (symbols, columns=[’Symbol’])

Berechnung der Marktkapitalisierung

Als nichster Schritt wird fiir jede dieser Aktien die Marktkapitalisierung berechnet. In der konservativen
Formel werden nidmlich blof3 die 1000 groten Unternehmen nach Marktkapitalisierung betrachtet. Das
urspriingliche Universum an Aktien, die gehandelt werden konnen und zu denen Daten verfiigbar sind,
umfasst normalerweise rund 7000 Symbole. Das wird nun auf die grofiten 1000 reduziert.

20

Um die Marktkapitalisierung einer Aktiengesellschaft zu erhalten, wird fiir jede Aktie ein HTTP re-

quest an IEX Cloud gesendet. Das passiert auf asynchrone Weise, um diesen Prozess zu beschleunigen.
Die URL, an die der API request gesendet wird, lautet:
,https://cloud.iexapis.com/stable/stock/<Symbol der Aktie>/stats/marketcap?token=<API Token>*
Das asynchrone Absenden der requests funktioniert analog wie in Absatz vorgestellt. Das retour-
nierte Datenformat ist hierbei wieder in JSON, erfordert aber keine weitere Decodierung, weil blof3 eine
einfache Zahl als Resultat retourniert wird. Eine einzelne asynchrone API Anfrage zur Ermittlung der
Marktkapitalisierung sieht folgendermaGen aus:

url = self.iex _base_url +
"stock/{}/stats/marketcap?token=" +
self.iex_key

url wird in fetch_all Funktion formattiert um
das Symbol der Aktie zu enthalten

async with session.get (url) as response:
return await response. json()

Nach dem asynchronen Absenden aller Anfragen wird, wie in Absatz [4.3] eine Liste an Resultaten
erhalten. Diese werden in der Tabelle in der Spalte "Market Cap’ hinzugefiigt:

df ["Market Cap’] = results

Weil aber nun unser Universum auf die grofiten 1000 Aktien reduzieren werden soll, muss die Tabelle
noch dementsprechend manipuliert werden:

df.sort_values (by="Market Cap’, ascending=False, inplace=True)
df.reset_index (drop=True, inplace=True)
df = df[:1000] # groBten 1000 werden betrachtet

Berechnung der Volatitlitit

Nichster Schritt in der Konservativen Formel ist die Volatilitét der letzten drei Jahre jeder Aktie zu be-
rechnen. Daraus folgend wird dann nur noch die Hélfte der Aktien betrachtet, die die geringste Volatilitét
aufweisen.

Um die Volatilitit einer Aktie der letzten drei Jahre zu berechnen, werden die jeweiligen Kursverldufe
der letzten drei Jahre benoétigt. Diese werden iiber die Yahoo Finance API (yfinance) ermittelt.

Dieser Prozess wird rein iterativ durchgefiihrt, weil die Bibliothek yfinance keine asynchrone Pro-
grammierweise unterstiitzt. Da es sich aber hierbei blo noch um 1000 Aktien handelt, ist der zeitliche
Aufwand vertretbar.

Zum Berechnungsmodus ist anzumerken, dass hierbei historische Daten der letzten fiinf Jahre anstatt
der benétigten drei Jahren geladen werden. Einerseits weil Daten von etwas mehr als drei Jahre bendtigt
werden und andererseits weil yfinance als passendes Zeitintervall blo3 zwei bzw. fiinf Jahre oder maxi-
male Dauer, fiir die Yahoo Finance Daten besitzt, als Input akzeptiert. Um die Volatilitit einer einzelnen
Aktie zu berechnen, dient folgende Funktion:

def vola_helper (symbol: str) —-> float:
history = yf.Ticker (symbol) .history (
period="5y",
interval="1d4d",
actions=False

)

Lé&nge der Eintrdge muss grober als 757 sein

21

252 Tage wird durchschnittlich im Jahr gehandelt
252 x 3 = 756, wir wollen auch die
Anderungsrate des ersten Tages —-> 757
if len(history) < 757:
return np.NAN

entferne nicht bendétigte Spalten
history.drop([’Open’, ’"High’, ’'Low’, ’'Volume’],
inplace=True, axis=1)

betrachte nur gewlinschten Zeitraum
history = history[-757:]

berechne t&dgliche Anderungsrate
history[’ROC’] = history.pct_change(1l)

entferne ersten Eintrag weil dieser NAN ist
history = history[1l:]

retourniere die Standardabweichung = Volatilitat
return history[’ROC’].std()

Diese Funktion muss nun fiir jedes einzelne Symbol in unserem Dataframe aufgerufen werden. Dafiir
eignet sich die apply Funktion von Pandas:

dataframe[’Volatility’] = dataframe.apply (
lambda row: self.vola_helper (row.Symbol),
axis=1)

Um nun die Hilfte an Aktien mit der geringsten Volatilitdt zu betrachten, werden folgende Manipu-
lationen am Dataframe durchgefiihrt:

dataframe.dropna (inplace=True)

dataframe.sort_values (by='Volatility’, ascending=True, inplace=True)
dataframe.reset_index (drop=True, inplace=True)

dataframe = dataframe[:int (len (dataframe) / 2 + 1)]

Dabei ist es moglich, dass nicht mehr ganze 500 Aktien in dem Universum sind, weil manche erst zu
kurz am Markt sind und dadurch aussortiert worden sind.

Berechnung und Reihung nach Momentum

Zur Berechnung des 12-1 Monate Momentums wird ebenfalls yfinance verwendet. Die Funktionsweise
ist im Prinzip gleich wie jener der Berechnung der Volatilitdt. Der einzige Unterschied liegt darin, dass
zwei Jahre an Daten angefordert werden und als Riickgabewert die Division des letzten bekannten Werts
durch jenem von vor 252 Tagen geliefert wird.

Am Ende werden dann folgende Manipulationen am Dataframe durchgefiihrt, um die Reihung nach
Momentum zu erhalten (Indizes starten in der Regel bei O anstatt bei 1, daher muss bei der Berechnung
der Reihung eins zum Index der jeweiligen Reihung in der Sortierung hinzufiigt werden):

dataframe.sort_values (by=’'Momentum’, ascending=False, inplace=True)
dataframe.reset_index (drop=True, inplace=True)
dataframe [’ Momentum Ranking’] = dataframe.index + 1

22

Berechnung und Reihung nach Nettoauszahlungsrendite

Wie die Nettoauszahlungsrendite fiir jede einzelne Aktie berechnet wird, wurde bereits in Kapitel 4.3] bei
der Vorstellung der Bibliothek aiohttp, behandelt. Es werden die Daten von der Website gurufocus.com
extrahiert.

Die Resultate dieses Prozedere werden wiederum in der verwendeten Tabelle in einer neuen Spalte
gespeichert und dieselbe Reihung durchgefiihrt wie zuvor nach Momentum.

Berechnung der finalen Reihung

Nun sind in der Tabelle alle benétigten Spalten zur Berechnung der finalen Reihung enthalten. Zuerst
wird die Bewertung der einzelnen Aktien berechnet. Diese setzt sich aus dem Durchschnitt der Reihung
nach Momentum und Nettoauszahlungsrendite zusammen. Im Programm sieht das folgendermallen aus:

dataframe[’Rating’] = (dataframe [’ Momentum Ranking’]
+
dataframe[’NPY Ranking’])
/ 2

Nach dieser Bewertung wird nun ebenfalls wieder sortiert und eine Reihung vergeben. In diesem Fall
wird aber aufsteigend sortiert, weil eine geringe Bewertung besser ist als eine hohe:

dataframe.sort_values (by='Rating’, ascending=True, inplace=True)
dataframe.reset_index (drop=True, inplace=True)
dataframe([’Final Ranking’] = dataframe.index + 1

Das Resultat ist eine fertige Bewertung in tabellarischer Form. In der Spalte ’Final Ranking’ findet
sich die jeweilige Platzierung der Aktien. Investiert wird dann in die besten 100 nach dieser Reihung.

4.7 Portfolio-Konstruktion

Der Algorithmus zur Konstruktion des Portfolios berechnet ein fertiges Portfolio basierend auf einer
existierenden Bewertung. Es ist der nédchste Schritt, der durchgefiihrt werden muss.

Die Bedingung, die der Algorithmus erfiillen soll, ist hauptsédchlich, eine annihernd gleich verteilte
Investition in die einzelnen Aktien zu erreichen. Im fertigen Programm wird diese Aufgabe von der
Portfolio-Klasse erfiillt.

Zu Beginn der Prozedur existiert ein Dataframe, welches die Bewertung enthélt. Von dieser Tabelle
werden die besten 100 betrachtet und auf die Spalte mit den Symbolen der Aktien reduziert:

df = pd.read_csv(os.path.join(self.rating_path, name_of_rating + ".csv"))
df = df[:100]
df = df.filter ([’ Symbol’])

Um nun eine anndhernd gleiche Verteilung zu berechnen, miissen zuerst die aktuellen Preise der
einzelnen Aktien berechnet werden. Das funktioniert dhnlich der Berechnung des Momentums oder der
Volatilitdt im Bewertungsalgorithmus. Es wird fiir jede Zeile des Dataframes eine Funktion ausgefiihrt,
die den letzten bekannten Preis der Aktie retournieren soll:

def last_price_helper(self, symbol: str) -> float:
price = self.alp_api.get_last_trade (symbol)
return price.price

df ['Price’] = df.apply(

lambda row: self.last_price_helper (row.Symbol),
axis=1)

23

Jetzt muss noch herausgefunden werden, wie viel Geld fiir die Investition zur Verfiigung steht. Das
passiert mittels der alpaca-trade-api:

equity = float(self.alp_api.get_account () .equity)

Da aber die Kurse der Aktien nicht in Stein gemeifelt sind und sich bis zum eigentlichen Kauf noch
verdndern konnen, ist es sinnvoll, nicht 100% planméBig zu investieren, sondern einen kleinen Puffer zu
lassen. In diesem Projekt wurde eine Investition von 99% angestrebt, was unter normalen Marktbedin-
gungen geniigend Sicherheit bietet, alle Aktien schlussendlich in der gewiinschten berechneten Anzahl
kaufen zu kénnen. Somit wird der eigentliche Betrag, der investiert werden soll, folgendermafen berech-
net:

equity ist bereits vorhanden

cash = float(self.alp_api.get_account ().cash)
if cash < (equityx (l-config.MAX_POS_THRESHOLD)) :
equity = equity - (equityx*(l-config.MAX_POS_THRESHOLD) -cash)

equity = equityxconfig.MAX_POS_THRESHOLD

Dabei ist in der Konfigurationsdatei config ein Wert gespeichert, der diese 99% reprisentiert, genannt
MAX_POS_THRESHOLD. In der if Abfrage zuvor wird verglichen, ob das momentan verfiigbare Cash
die gewiinschte Quote von 1% im Verhiltnis zum Gesamtvermogen erfiillt. Wenn nicht, bedeutet das,
dass beim letzten Ausrichten des Portfolios der Puffer teilweise bendtigt wurde. Um den Puffer grof3
genug zu halten, wird unser Gesamtvermogen so weit verringert, dass dieser 1% Puffer wiederhergestellt
ist. Schlussendlich wird erneut der 1% Puffer mit einberechnet, was den eigentlichen Sicherheitsabstand
fiir die kommende Neuausrichtung darstellt.

Nun muss berechnet werden, wie viel in eine einzelne Aktie investiert werden darf, um eine gleich
verteilte Investition zu erreichen. Dafiir wird das vorhandene Vermogen einfach durch die Gesamtzahl, in
die investiert werden soll (100 Stiick), dividiert. Das Resultat wird in der Variable pos_size gespeichert.

pos_size = numpy.divide (equity, len (df))

Da jedoch beim Broker Alpaca zur Zeit der Umsetzung blof} ganze Aktien gekauft werden konnen,
wird es vorkommen, dass manche Aktienkurse teurer sind als die berechnete pos_size. Andere Akti-
en wiederum sind billiger, was zu einer Investition mehrerer Stiicke fiihrt, wobei nahezu niemals das
verfligbare Budget pro Aktie optimal ausgeschopft wird. Um dieses Problem zu 16sen, wird ein relativ
simpler Greedy Algorithmus konstruiert, der primér darauf abzielt, von jeder Aktie mindestens ein Stiick
zu kaufen und darauf folgend das vorhandene Gesamtvermogen so gut wie moglich auszuschopfen.

Zu Beginn dieses Algorithmus wird zuerst die initiale Anzahl pro Aktie, in die investiert werden
kann, berechnet. Dafiir wird in der Spalte ,,Shares* das abgerundete Resultat der Division von pos_size
und Preis der Aktie gespeichert:

df [’ Shares’] = df.apply(
lambda row: int (np.divide (pos_size, row.Price)),
axis=1)

In der Spalte ,,Total* wird gespeichert, wie viel gesamt in diese Aktie investiert werden wiirde, also
Total = Price x Shares:

df [’ Total’] = df[’Price’] x df[’Shares’]

Nun folgt der eigentliche Greedy Algorithmus:

24

def greedy_df (to_manipulate: pd.DataFrame) -> pd.DataFrame:
to_manipulate.sort_values (by='Price’, ascending=True, inplace=True)
has_changed = False

shares = to_manipulate[’Shares’].tolist ()
manipulate = to_manipulate.copy ()

for 1 in range(len(shares)):
Garantiert dass in jede Aktie investiert wird

if shares[i] == O:
shares[i] =1
has_changed = True
manipulate [’ Shares’] = shares
manipulate[’Total’] = manipulate[’Price’] x manipulate[’Shares’]

Uberpriife ob wir Ulber dem Vermdgen sind nachdem
in jede Aktie min. einmal investiert wird
oder ob wir noch Potential nach oben haben
if manipulate[’Total’].sum() <= equity:
downsizing = False
else:
downsizing = True

for i in range(len(shares)):
if downsizing and shares[i] > 1:

shares[i] = shares[i] - 1
elif not downsizing:
shares[i] = shares[i] + 1

Ulberpriife in jeder Iteration ob Algorithmus fertig ist

manipulate [’ Shares’] = shares

manipulate[’Total’] = manipulate[’Price’] * manipulate[’ Shares’]

if not downsizing and not manipulate[’Total’].sum() <= equity:
shares([i] = shares[i] - 1
manipulate[’ Shares’] = shares
manipulate [’ Total’] = manipulate[’Price’] x manipulate[’ Shares’]

durch ein Stilick pro Aktie bereits iiber Ziel hinausgeschossen
——> verringere Stlickzahl anderer Aktien in neuer Iteration
if has_changed:
return greedy_df (manipulate)
ansonsten normal fertig geworden
else:
return manipulate
elif downsizing and manipulate [’ Total’].sum() <= equity:
return manipulate
has_changed = True

Eine Iteration von Verkleinerungen reicht nicht

if manipulate[’Total’].sum() > equity:
return greedy_df (manipulate)

25

Eine Iteration von VergrdRerungen reicht nicht
else:
return greedy_df (manipulate)

Die Funktionsweise ist folgende: Zu Beginn wird die Tabelle aufsteigend nach den Preisen sortiert.
Dann wird iiber jede einzelne Aktie iteriert. Falls bei einer als zu investierende Anzahl eine Null steht,
wird sie durch eine Eins ersetzt. Das garantiert, dass in jede Aktie investiert wird.

Nun wird mittels der Summe der *Total” Spalte iiberpriift, ob durch diese Anderung das verfiigbare
Vermogen iibertroffen wurde, oder ob noch ein Rest verfiigbar ist. Diese Uberpriifung ist ausschlagge-
bend, ob der Algorithmus in Folge versucht, mehr Aktien zu kaufen, um das Potenzial voll auszuschop-
fen, oder weniger Aktien zu kaufen, um innerhalb des verfiigbaren Rahmens zu gelangen.

Es wird iiber jede einzelne Aktie iteriert. Dabei wird versucht, entweder eine Aktie mehr oder weni-
ger zu kaufen als urspriinglich geplant. Dann wird iiberpriift, ob das Ziel bereits erreicht ist, oder nicht.
Falls das Ziel erreicht und mittels der Erh6hung der zu kaufenden Stiick fiir diese konkrete Aktie bei-
spielsweise das Vermogen voll ausgeschopft ist, wird der Algorithmus abgebrochen. Sollte nach einer
vollstindigen Iteration das Ziel noch nicht erreicht worden sein, so wird eine erneute Iteration durchge-
fiihrt.

Dieser Greedy Algorithmus liefert zwar nahezu niemals eine perfekte Gleichverteilung oder Anni-
herung an das verfiigbare Vermégen, es reduziert aber den Abstand zum gewiinschten investierten Ver-
mogen im Vergleich zur initialen Berechnung der Stiickzahlen enorm. Fiir die Zwecke dieser Umsetzung
ist dieser Algorithmus ausreichend.

Nach Aufruf dieses Greedy Algorithmus existiert ein fertiges Dataframe, welches das zu investieren-
de Portfolio darstellt. Dieses Dataframe enthélt drei Spalten: Symbol, Price und Total. Es besitzt exakt
jene Struktur, wie in Kapitel[3.2]in Tabelle[3.3| vorgestellt. Aufgerufen wird der Algorithmus mit unserem
Dataframe als Input folgendermaBen:

df = greedy_df (df)

4.8 Algorithmus zur Neuausrichtung des Portfolios

Als letztes Glied in der Kette muss das berechnete Portfolio auch beim verwendeten Broker Alpaca Mar-
kets umgesetzt werden. Dazu wird das in den folgenden Absitzen beschriebene Prozedere durchgefiihrt.

Zu Beginn werden alle allféllig noch offenen Kéufe oder Verkdufe storniert, um Konflikte zwischen
Auftrigen zu vermeiden. Im Normalfall sollten, weil dieser Prozess blof3 alle drei Monate durchgefiihrt
wird, sowieso keine noch offenen Auftrige existieren.

self.alp_api.cancel_all_orders()

Im Falle einer erstmaligen Investition in das Portfolio sind die weiteren Schritte trivial. Es werden von
jeder Aktie genau so viele Stiicke gekauft, wie im berechneten Portfolio veranschlagt. Dieses Prozedere
soll aber auch funktionieren, wenn bereits in ein bestehendes Portfolio investiert wurde und dieses an das
neu berechnete Portfolio angepasst werden soll.

Dazu muss zuallererst eine Liste von Positionen, in die bereits investiert wurde, vom Broker abge-
fragt werden. Als Datenstruktur zur Speicherung dieser Positionen wird ein Dictionary verwendet. Das
speichert die Eintridge als Kombination von Key und Value, also Schliissel und Werten. Als Schliissel
wird das Symbol der Aktie verwendet und als Wert die Stiickzahl:

positions = {}
pos_api = self.alp_api.list_positions/()
for p in pos_api:

positions[p.symbol] = int (p.gty)
del pos_api

26

Nun wird tiber alle Aktiensymbole, die zurzeit im gehaltenen Portfolio vorkommen, iteriert. Dabei
wird {iberpriift, ob das Symbol im neuen Portfolio noch vorkommt. Wenn nicht, dann werden alle Stiicke
dieser Aktie verkauft. Sollte das Symbol im neuen Portfolio ebenfalls vorkommen, dann wird verglichen,
ob im neuen Portfolio weniger Stiick von dieser Aktie gehalten werden sollen und, sofern das der Fall
ist, so viele Aktien verkauft bis die Stiickzahlen iibereinstimmen. Als erster Schritt der Neuausrichtung
werden also alle Aktien verkauft, die im neuen Portfolio nicht vorkommen sollen. Das dient dazu, dass
spéter, bei den Einkédufen, geniigend Geld vorhanden ist, um auch alle gewiinschten Aktien kaufen zu
konnen. Im Programmcode sieht das beschriebene Prozedere folgendermafien aus:

for s in positions.keys():
if s not in portfolio.keys():
self.alp_api.close_position(s)

elif int (positions([s]) > int (portfolio[s]):
diff = positions([s] - portfoliols]
self.alp_api.submit_order (
symbol=s,
gty=diff,
side='sell’,
type="market’,
gtc = good till cancelled
d.h. es kann nur manuell storniert werden
time_in_force='gtc’

)

Nach dem Verkauf der nicht bendtigten Aktien miissen die Aktien gekauft werden, die im Portfolio
enthalten sein sollen. Das passiert folgendermal3en:

for s in portfolio.keys():
if s not in positions.keys():
self.alp_api.submit_order (
symbol=s,
gty=portfoliol[s],
side='buy’,
type="market’,
time_in_force='gtc’
)
else:
diff = int (portfolio[s]) - int (positions[s])

die Anzahl passt, es wird nichts unternommen
if diff <= 0:
continue

self.alp_api.submit_order (
symbol=s,
gty=diff,
side='buy’,
type="market’,
time_in_force='gtc’

)

Am Ende des Prozedere werden die Auftrage an den Broker iibermittelt und das Portfolio sollte fertig
ausgerichtet sein.

27

4.9 Neuausrichtung jedes Quartal

In den vorherigen Absitzen sind die einzelnen Algorithmen, die zur Berechnung, Erstellung und Neu-
ausrichtung des Portfolios benotigt werden, vorgestellt worden. Nun fehlt noch der Teil des Programms,
der gewdhrleistet, dass diese Algorithmen alle drei Monate, also zu Beginn eines Quartals, wiederholt
werden. Diese Logik findet sich ausschlieBlich in der Main Klasse.

Um ein konkretes Quartal, in dem das Portfolio neu ausgerichtet werden soll, bzw. worden ist, zu
speichern, wird eine aussagekriftige Abkiirzung in der Datenbank verwendet. So bedeutet ,,Q1_2021*
das erste Quartal im Jahr 2021. Neben dem Texteintrag finden wir laut unserer Datenbankplanung eine 1
oder 0, je nachdem ob die Neuausrichtung fiir dieses Quartal stattgefunden hat oder nicht.

Zeitpunkte, die mit einem Quartal in Verbindung stehen, sind fest einprogrammiert: Das erste Quartal
hat als Richtdatum den 1. Januar, das zweite Quartal den 1. April, das dritte Quartal den 1. Juli und das
vierte Quartal den 1. Oktober. Richtdatum deshalb, weil nicht immer der Markt an diesen Tagen offen ist
und die Neuausrichtung nur stattfinden kann, wenn der Aktienmarkt auch offen ist. Sollte der Markt zu
diesem Termin geschlossen sein, so wird am néchst offenen Markttag neu ausgerichtet. Das Prozedere,
fiir das jeweilige Quartal ein konkretes Datum zu bekommen, sieht folgendermaf3en aus:

def get_next_rebalancing_date(self, quarter_year: str) —-> datetime:
months = {’'Q1’: 1, "Q2": 4, 'Q3’: 7, "Q4": 10}

month, year = quarter_year.split ("_")
month = months[month]
ts = year + "-" + str(month) + "-1"

calender = self.alp_api.get_calendar (start=ts)
return calender[0] .date.to_pydatetime () .date ()

Wann der Markt offen ist, wird direkt vom Broker erfahren. Dazu wird im obigen Code wieder die
alpaca-trade-api Bibliothek verwendet.

Nun wird fiir ein konkretes Quartal das jeweilige Datum zur Neuausrichtung berechnet. Das Pro-
gramm wartet nun bis zu diesem Datum mittels der time.sleep() Methode. Wenn das Datum mit dem
kalkulierten Tag iibereinstimmt, wird der Bewertungsalgorithmus kurz nach Mitternacht gestartet. Nach
Durchlaufen des Bewertungsalgorithmus wird mittels der Alerter Klasse eine kurze Textnachricht an
den Programmierer gesendet, worin Durchfithrungszeit des Bewertungsalgorithmus und Zeitpunkt der
Marktoffnung vermerkt sind. Erfahrungsgemif3 dauert die Berechnung der neuen Bewertung mehrere
Stunden, abhéngig von der Stabilitét der Internetverbindung.

Nach dem Bewertungsalgorithmus wird das Portfolio konstruiert, jedoch erst, wenn der Markt auch
tatsdchlich offen ist, damit die verwendeten Preise so aktuell wie moglich sind. Weil die Konstruktion
bloB rund 30 Sekunden dauert, ist es verkraftbar, diese erst unmittelbar nach Marktoffnung durchzufiih-
ren. Wann genau der Markt 6ffnet, kann folgendermaf3en ermittelt werden:

clock = self.alp_api.get_clock()
if not clock.is_open:

to_open = clock.next_open - clock.timestamp
to_open = to_open.total_ seconds ()
hours, rem = divmod (to_open, 3600)
minutes, seconds = divmod(rem, 60)
message = "{:0>2}:{:0>2}:{:05.2f}".format (

int (hours),

int (minutes),

seconds)
self.alerter.send_message ("Market will open in " + message)
time.sleep (to_open)

28

Obiger Code zeigt auch, wie eine Nachricht mittels der Alerter Klasse gesendet wird.

Nach der Konstruktion des Portfolios wird das Portfolio beim Broker angepasst. Dieses Prozedere
ist bereits in Absatz 4.8| vorgestellt worden.

Nach Vollendung der Neuausrichtung wird das Quartal in der Datenbank als fertig ausgerichtet mar-
kiert:

self.cursor.execute (f"UPDATE dates SET rebalanced = 1 "\
f"WHERE quarter_year = ' {quarter_year}’'")
self.conn.commit ()

Dann wird ein neues Quartal in die Datenbank eingefiigt. Auf Q1_2021 folgt Q2_2021. Das Pro-
gramm befindet sich bis zum neuen Termin im Ruhezustand und sodann wird wiederum eine neue Be-
wertung, Konstruktion und Neuausrichtung durchgefiihrt. Somit befindet sich das Programm in einer
Endlosschleife, bei der rund alle drei Monate das gesamte Prozedere durchgefiihrt wird, sofern keine
unvorhergesehenen Fehler passieren.

4.10 Umgang mit Errors

Dieses Kapitel beschreibt wie in der Implementierung mit unterschiedlichen Errors umgegangen wird.

Stromausfall

Als Erstes wird ein moglicher Stromausfall behandelt. Weil die Implementierung aus Kostengriinden
nicht in der Cloud, sondern auf einem {iiblichen privaten Rechner lduft, miissen die Folgen eventu-
eller Stromausfille minimiert werden. Dazu wird in den kritischen Prozessen, hauptséichlich bei der
Bewertung, weil diese so lange dauert, nach jedem Zwischenschritt die Bewertung als .csv Datei zwi-
schengespeichert. Somit kann bei einem eventuellen Stromausfall bei dem Schritt fortgesetzt werden,
wo der Ausfall passierte. Dafiir wird nach der Berechnung des Universums an Aktien, der Berechnung
der Marktkapitalisierung, Volatilitdt, Nettoauszahlungsrendite und des Momentums das verwendete Pan-
das Dataframe als .csv Datei gespeichert. Bei Neustart des Programms wird zuerst versucht, eine lokale
Bewertung in Form einer .csv Datei zu lesen, bevor mit der weiteren Berechnung fortgesetzt wird.

Die Implementierung l4uft auf einem Linux Rechner, was den Einsatz von sogenannten Cron Jobs
ermoglicht. Mittels eines Cron Jobs wird jedes Mal, wenn der Rechner gestartet wird, das Programm
ausgefiihrt. Wie ein Cron Job auf einem Linux Rechner eingerichtet werden kann, um ein Programm
direkt nach Neustart bzw. Start des Rechners automatisch auszufiihren, kann in diesem Artikel [[11]]
nachgelesen werden.

Netzwerkausfall

Ein haufigeres Problem, wenn das Programm auf einem privaten Rechner und Netzwerk l4uft, sind Netz-
werkprobleme. Das Internet wird bei der Durchfithrung der API requests benétigt, kann aber kurzfristig
nicht verfiigbar sein. Um damit umzugehen, miissen die jeweiligen Fehlercodes abgefangen werden und
eine Logik implementiert werden, die nach einer gewissen Zeit erneut versucht, die vorher gescheiterten
API Anfrage durchzufiihren.

Um diese Funktionalitit zu erfiillen, enthélt jede API Anfrage folgenden Programmcode:

while True:

try:

async with session.get (url) as response:
return await response.read()

except aiohttp.ClientConnectionError:
await asyncio.sleep(5)

except aiohttp.ServerDisconnectedError as e:
await asyncio.sleep(5)

29

except asyncio.TimeoutError:
await asyncio.sleep(5)

Selbiges gilt fiir synchrone API Anfragen, wobei je nach verwendeter API eigene Fehlercodes abge-
fangen werden miissen. Hier noch ein Beispiel fiir eine sichere Anfrage an die Yahoo Finance API:

while True:
try:
df = yf.Ticker (symbol) .history (period="2y",
interval="1d",
actions=False)
if df.empty or df is None:
return np.NAN
break
except requests.ConnectionError:
time.sleep (5)
except requests.Timeout:
time.sleep (5)
except requests.exceptions.ChunkedEncodingError:
time.sleep (5)
normally weird Yahoo Finance is Down Exception
except RuntimeError as e:
time.sleep(10)

Im Prinzip wird jede Anfrage in einer Endlosschleife so oft ausgefiihrt, bis eine zufriedenstellende
Antwort erhalten wird. Bevor eine Anfrage aber nach Erfolglosigkeit wiederholt wird, wird das Pro-
gramm fiir ein paar Sekunden unterbrochen. Wenn néamlich zu viele Anfragen an eine externe API in
zu kurzer Zeit gesendet werden, dann wird man von dessen Server gedrosselt oder aber ignoriert. So
schiitzen externe APIs sich vor Uberlastung.

Im fertigen Programm wird natiirlich der Fehler mittels dem Standard logging Modul von Python in
einer .log Datei vermerkt, um etwaige Auffélligkeiten nachlesen zu kdnnen.

Bei allen in dieser Arbeit vorgestellten Codefragmente wird auf die Sicherung der API Anfragen
gegen Netzwerkfehler zur besseren Lesbarkeit der Code Stiicke verzichtet.

Interne Errors

Trotz aller Versuche, ein Programm stabil zu entwickeln, konnen dennoch unvorhergesehene Fehler auf-
treten. Um bei solchen Fehlern informiert zu werden, wird folgende SicherheitsmaBBnahme eingebaut:
Der initiale Aufruf der Main.run() Methode wird mittels eines try-except Block umgeben. Dabei werden
alle moglichen Exceptions gefangen, und im Fall dieser wird der Programmierer mittels Alerter benach-
richtigt. Im Programmcode der Main Datei sieht das folgendermafien aus:

class Main:

def handle_error (self, exception: Exception) -> None:
self.alerter.send_message ("There has been an Exception!")
self.alerter.send_message (str (exception))
self.alerter.send_message (str(
traceback.extract_ tb(
exception.__traceback_)

30

self.logger.exception ("Unrecoverable Exception Occured")
self.logger.error (str (exception))
self.logger.error (traceback.extract_tb (exception.__traceback__))

if _ name_ == '_ _main__ ':
mainObject = Main ()
try:

mainObject.run ()
except Exception as e: # handle every possible Exception
mainObject.handle_error (e)

31

Kapitel 5

Validierung und Diskussion

Die fertige Implementierung wurde in Echtzeit getestet und die Resultate sowie Probleme der Testphase
werden in diesem Kapitel vorgestellt.

5.1 Resultate

Der folgende Absatz stellt die Resultate der Implementierung im getesteten Zeitraum (11.2.2021 bis
31.5.2021) vor.

Wihrend des getesteten Zeitraums wurde eine initiale Konstruktion eines Portfolios am 11.2. und ei-
ne Neuausrichtung dieses Portfolios an das am 1.4.2021 berechnete Portfolio durchgefiihrt. Dazu wurde
ein fiktives Depot mit einem Wert von 100 000 $ erstellt. Dessen Performance nach Investition dieser
100 000 $ wurde dann aufgezeichnet und in Folge mit dem Erfolg eines Referenzportfolios, das aus-
schlieBlich in den S&P 500 ETF ,,SPY* investierte, verglichen. Grundsitzlich ist das Programm ohne
groBere Probleme gelaufen und hat wie erwartet funktioniert. Die initiale Konstruktion und Neuaus-
richtung des Portfolios sind problemlos durchgefiihrt und die Entwicklung des erstellten Portfolios ist
erfolgreich aufgezeichnet worden.

Konservative Formel vs. S&P 500
[S&P 500

o WO

107

Relative Entwicklung
-
=]
]

103

21.04.2021 03.05.2021 13.05.2021 25.05.2021

11.02.2021 24.02.2021 08.03.2021 18.03.2021 29.03.2021 11.04.2021
Datum

Abbildung 5.1: Entwicklung im getesteten Zeitraum

32

Die Resultate der Testphase sind in Abbildung [5.1|dargestellt. In Zahlen gefasst verbesserte sich die
Implementierung der Konservativen Formel im betrachteten Zeitraum um 12%, wihrend der S&P 500
ETF ,,SPY* um 7,5% stieg. Somit ist die Implementierung besser als der Markt und validiert die ten-
denziell positive Fortsetzung der historischen Ergebnisse der Konservativen Formel nach Van Vliet und
Blitz [2]. Die Entwicklung ist aber von stindigen Hohen und Tiefen geprigt, wobei die Gesamtentwick-
lung sehr stark mit der des S&P 500 korreliert, meist aber etwas besser ist und zu einem deutlich besseren
Gesamtergebnis fiihrt.

Die visualisierte Entwicklung beriicksichtigt keine Dividendenausschiittungen. Im betrachteten Zeit-
raum wiren im implementierten Portfolio 734,79 $ und vom S&P 500 ETF 327,17 $ ausgeschiittet. Dabei
muss aber angemerkt werden, dass der S&P 500 ETF quartalsweise Dividende ausschiittet und im er-
stellten Portfolio die darin enthaltenen Aktien ihre Dividende an unterschiedlichen Stichtagen auszahlen.
Alleine im ersten Quartal, vom 1.1. bis 1.4.2021, in dem aber nicht durchgehend investiert wurde, weil
die Implementierung erst am 11.2. in die Testphase ging, hitte durch die Konservative Formel Dividende
in Hohe von 365,98 $ erzielt werden konnen, wohingegen SPY blof3 327,17 $ an Dividende ausschiitte-
te. Somit ldsst sich mit relativer Sicherheit sagen, dass das Portfolio der Konservativen Formel auch im
Punkt Dividendenrendite besser als SPY ist.

5.2 Probleme bei der Umsetzung

Die Umsetzung ist aber nicht immer reibungslos verlaufen und es galt einige Probleme zu 16sen. Um
auf moglichst viele Probleme so schnell wie moglich aufmerksam zu werden, ist in einer Testphase
parallel zum eigentlichen Portfolio ein Testportfolio verwendet worden, das jeden Tag angepasst worden
ist. D.h. Berechnung, Konstruktion und Ausrichtung des Portfolios sind téglich in diesem Testportfolio
durchgefiihrt worden, um manuell auf allfillig auftretende Probleme zu testen. Die dabei entdeckten
Fehler und deren Beurteilung werden in den folgenden Absitzen vorgestellt.

Probleme der Alpaca API

Dieser Absatz fasst die Probleme, die bei der Kommunikation mit der API des Brokers Alpaca Markets
aufgetreten sind, zusammen.

* API liefert altes Datum fiir zuletzt durchgefiihrte Transaktionen:

Dieses Problem trat am 2.3.2021 auf und war bei der Konstruktion des Portfolios stérend, weil
das Portfolio anhand falscher Preise konstruiert wurde. Ursache fiir dieses Problem war ein neues
Feature von Alpaca Markets, ndmlich ein eigenes Angebot von historischen Preisdaten. Durch
die Verdffentlichung dieses Features wurden scheinbar andere Funktionen beeintrichtigt, unter
anderem die Funktion, Daten beziiglich der zuletzt durchgefiihrten Transaktion zu bekommen.

* API lieferte falsche Daten bei Anfrage des Gesamtvermogens:

Dieses Problem trat zwei Tage spiter, am 4.3.2021 auf. Dabei wurde eine inkorrekte Antwort
erhalten was das gesamt verfiigbare Vermogen betrifft. Storend war es in der Testphase wiederum
bei der Konstruktion des Portfolios, wo von einem falschen Budget ausgegangen wurde.

* Splits werden ignoriert:

Im Zuge der Testphase der Implementierung fanden vereinzelt sogenannte Aktiensplits statt. Ak-
tiensplits bedeuten die Unterteilung einer Aktie in mehrere Teile, meist um den Preis einer Aktie
zu verringern. Laut Alpaca Markets [21]] werden Aktiensplits bewusst in Paper-Trading Accounts
nicht beriicksichtigt. Das fiihrt aber zu einer Verfilschung der Ergebnisse, darum miissen diese
Splits manuell eingerechnet werden.

* Dividenden werden ignoriert:

33

Dividenden werden in Paper-Trading Accounts ebenfalls vernachléssigt. Das Problem ist im Grun-
de analog zu dem der Aktiensplits. Einziger Unterschied ist jener, dass Dividenden keine so grofie
Auswirkungen wie grof3e Aktiensplits im Ergebnis haben.

Probleme mit der Yahoo Finanzen API

¢ Performance Probleme:

Interessanterweise und ohne direkt nachvollziehbaren Grund wurden die API Anfragen iiber yfi-
nance ab dem 12.3. merkbar langsamer. Die Anfragen dauerten in etwa doppelt so lange wie zu-
vor. Fiir die Zwecke dieser Implementierung ist Zeit noch kein Problem, weil es in erster Linie
den Bewertungsalgorithmus verlangsamt, was egal ist, solange die Bewertung vor Marktoffnung
fertiggestellt ist.

¢ Inkonsistenz der retournierten Daten:

Vereinzelt waren Daten, die iiber die yfinance Bibliothek abgerufen wurden, nicht konsistent.
Manchmal retournierte die API bei einer Spezifikation von einem Jahr blof ein halbes Jahr an
Daten. Dies konnte umgangen werden, indem immer zwei Jahre an Daten angefordert wurden.
Weiters kann bei der Anfrage spezifiziert werden, ob man Daten zu Dividenden bzw. Aktiensplits
beinhaltet haben mdchte. Fiir diese Implementierung sollten diese Daten nicht enthalten sein. Bei
der Neuausichtung des Portfolios am 1.4.2021 kam es ebenfalls zu Dividendenzahlungen bei di-
versen Aktien am selben Tag. Diese Aktien rutschten in der Bewertung raus, weil yfinance trotz
klarer Spezifikation, dass diese Daten nicht enthalten sein sollten, Dividendendaten statt Preisda-
ten lieferte. Das fiihrte zu einem Fehler im Programm, der zwar nicht zum Absturz fiihrte, jedoch
wurden dadurch diese Aktien fiir diese Neuausrichtung nicht weiter beriicksichtigt.

34

Kapitel 6

Zusammenfassung

In dieser Arbeit wurden die Konservative Formel und die darin verwendeten Indikatoren detailliert vor-
gestellt. Darauf basierend ist ein Programm entwickelt worden, das nach dieser Formel automatisiert
investiert. In einer Testphase vom 11.2.2021 bis zur Abgabe dieser Arbeit am 31.5.2021 ist die Entwick-
lung der Konservativen Formel aufgezeichnet und mit dem S&P 500 ETF ,,.SPY* verglichen worden. Die
Ergebnisse zeigen, dass ein Portfolio mit dem im Rahmen dieser Arbeit erstellten Programm vollauto-
matisiert gemanagt werden kann. Dabei ist eine Rendite zu erwarten, die iiber dem marktiiblichen Wert
liegt.

6.1 Optimierungsvorschlige

Die folgenden Absétze stellen einige Verbesserungsmoglichkeiten zur Umsetzung der Konservativen
Formel vor.

Teilaktien

Teilaktien ermdglichen den Kauf von Aktienanteilen. Dadurch fillt die Verpflichtung weg, gesamte
Stiicke an Aktien zu kaufen. Niitzlich sind Teilaktien fiir die Umsetzung der Konservativen Formel bei
der Berechnung und Ausrichtung des Portfolios. Teilaktien wiirden die Gleichverteilung des Vermogens
auf die 100 Aktien trivialisieren. Der gesamte Prozess der Portfoliokonstruktion wiirde iiberfliissig wer-
den und eine perfekte Gleichverteilung wire einfach zu erreichen. Alpaca Markets fiihrte am 4.3.2021
Teilaktien ein [21]. In diesem Angebot sind jedoch nicht alle Aktien zum anteiligen Kaufen verfiigbar.
Weiters steckt das Feature noch in Kinderschuhen, weshalb auf die Adaption der Implementierung ver-
zichtet worden ist.

APIs

Um konsistente und verldsslichere Daten zu bekommen, wire ein Wechsel der verwendeten APIs sinn-
voll. Da aber qualitativ hochwertige Anbieter wie z.B. Polygon [24] relativ kostspielig sind, ist mit den
bekannten APIs gearbeitet und versucht worden, dessen Fehler auszumerzen.

6.2 Ausblick

Aufgrund Zeit und Umfang dieser Arbeit sind noch einige Punkte offen, an die angekniipft werden kann.
Offene Verbesserungsmoglichkeiten aus technischer Sicht sind bereits vorgestellt worden.

Eine nidhere Betrachtung, besonders beziiglich der Wirtschaftlichkeit der implementierten Strategie,
ist vonnéten. Sind die préisentierten Ergebnisse auch nach Beriicksichtigung von Steuern und Transak-
tionskosten noch immer besser als ein ETF wie der ,,SPY* , der den S&P 500 Index abbildet? Bei der
einzigen Neuausrichtung, die im Rahmen der Testphase vorgekommen ist, sind bereits 30 Aktien aus

35

dem Portfolio gefallen, das entspricht 30% des abgebildeten Portfolios. Eine Neuausrichtung wird plan-
mifBig viermal im Jahr durchgefiihrt. Bei diesen Verkédufen sind Gebiihren und Kapitalertragsteuern zu
bezahlen, wohingegen diese bei einer Investition in einen ETF, der iiber lingere Frist gehalten wird, von
untergeordneter Bedeutung sind. Nichtsdestotrotz wére es sinnvoll, die Berechnung der abzufiithrenden
Steuern fiir getitigte Verkdufe und erhaltene Dividenden sowie realistische Gebiihren im Programm zu
integrieren. Dadurch konnte eine aus wirtschaftlicher Sicht genauere Prognose abgegeben werden bzw.
die Resultate wiren néher an der Realitét.

Weiters wire die Weiterentwicklung des Programms ein interessantes Ziel. Insbesondere die Ent-
wicklung einer Webapplikation, die Benutzer:innen ermoglicht, ihr Geld nach dieser Strategie zu veran-
lagen.

36

Literaturverzeichnis

(1]

(2]

(3]

(4]

[5]

[6]

(7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

Claudiu Tiberiu Albulescu. Covid-19 and the united states financial markets’ volatility. Finance
Research Letters, 38:101699, 2021.

David Blitz and Pim van Vliet. Ipr: The conservative formula: Quantitative investing made easy.
The Journal of Portfolio Management, 44(7):24-38, 2018.

David Blitz, Pim van Vliet, and Guido Baltussen. The volatility effect revisited. The Journal of
Portfolio Management, 2019.

Borsenlexikon. https://www.boerse.de/boersenlexikon/Marktkapitalisier
ung. Accessed: 2021-04-06.

Borsenlexikon. https://www.boerse.de/boersenlexikon/Momentum. Accessed:
2021-04-06.

Borsenlexikon. https://www.boerse.de/boersenlexikon/Volatilitaet. Acces-
sed: 2021-04-06.

US Inflation Calculator. https://trading-treff.de/wissen/aktienrueckkauf-
wieso-unternehmen—-aktien—-zurueckkaufen. Accessed: 2021-04-06.

YAN LIU CAMPBELL R. HARVEY. Evaluating trading strategies. The Journal of Portfolio
Management, 40:108-118, 2014.

IEX Cloud. https://iexcloud.io/docs/api/. Accessed: 2021-04-28.

ComputerWeekly. https://www.computerweekly.com/de/definition/Program
mierschnittstelle—-API. Accessed: 2021-04-29.

Computerwoche. https://www.tecchannel.de/a/cron-linux—-tools—und-bef
ehle-beim-boot—-ausfuehren,3205434. Accessed: 2021-05-03.

Franz Nestler Daniel Mohr. https://www.faz.net/aktuell/finanzen/deutschla
nd-im—-aktien-boom-wertpapier—-kauf-steigt-waehrend-corona-1722439
6.html. Accessed: 2021-04-06.

Guru Focus. https://www.gurufocus.com/term/buyback_yield/aapl/L Acces-
sed: 2021-04-06.

Deutsche Terminborse GmbH. Risiken, pages 87-90. Gabler Verlag, Wiesbaden, 1989.

William N. Goetzmann and Alok Kumar. Equity Portfolio Diversification*. Review of Finance,
12(3):433-463, 03 2008.

gurufocus. https://www.gurufocus.com/. Accessed: 2021-04-28.

37

https://www.boerse.de/boersenlexikon/Marktkapitalisierung
https://www.boerse.de/boersenlexikon/Marktkapitalisierung
https://www.boerse.de/boersenlexikon/Momentum
https://www.boerse.de/boersenlexikon/Volatilitaet
https://trading-treff.de/wissen/aktienrueckkauf-wieso-unternehmen-aktien-zurueckkaufen
https://trading-treff.de/wissen/aktienrueckkauf-wieso-unternehmen-aktien-zurueckkaufen
https://iexcloud.io/docs/api/
https://www.computerweekly.com/de/definition/Programmierschnittstelle-API
https://www.computerweekly.com/de/definition/Programmierschnittstelle-API
https://www.tecchannel.de/a/cron-linux-tools-und-befehle-beim-boot-ausfuehren,3205434
https://www.tecchannel.de/a/cron-linux-tools-und-befehle-beim-boot-ausfuehren,3205434
https://www.faz.net/aktuell/finanzen/deutschland-im-aktien-boom-wertpapier-kauf-steigt-waehrend-corona-17224396.html
https://www.faz.net/aktuell/finanzen/deutschland-im-aktien-boom-wertpapier-kauf-steigt-waehrend-corona-17224396.html
https://www.faz.net/aktuell/finanzen/deutschland-im-aktien-boom-wertpapier-kauf-steigt-waehrend-corona-17224396.html
https://www.gurufocus.com/term/buyback_yield/aapl/
https://www.gurufocus.com/

[17] Christians Homepage. https://www.christian-luetgens.de/homematic/telegr
am/botfather/Chat—-Bot .htm. Accessed: 2021-05-02.

[18] Kewei Hou, Chen Xue, and Lu Zhang. Replicating Anomalies. The Review of Financial Studies,
33(5):2019-2133, 12 2018.

[19] InfraSoft. https://www.infrasoft.at/images/downloads/uebersicht_der_u
ml_diagramme.pdfl Accessed: 2021-04-27.

[20] Investopedia. https://www.investopedia.com/terms/d/dividendyield.aspl
Accessed: 2021-04-06.

[21] Alpaca Markets. https://alpaca.markets/. Accessed: 2021-04-28.
[22] NumPy. https://numpy.org/. Accessed: 2021-04-28.

[23] André F. Perold. The capital asset pricing model. Journal of Economic Perspectives, 18(3):3-24,
September 2004.

[24] Polygon. https://polygon.io/pricing. Accessed: 2021-05-03.

[25] Pypi. https://pypi.org/project/aiohttp/. Accessed: 2021-04-28.

[26] Pypi. https://pypi.org/project/alpaca-trade-api/l Accessed: 2021-04-28.
[27] Pypi. https://pypi.org/project/asyncio/. Accessed: 2021-04-28.

[28] Pypi. https://pypi.org/project/beautifulsoupd/. Accessed: 2021-04-28.
[29] Pypi. https://pypi.org/project/pandas/L Accessed: 2021-04-28.

[30] Pypi. https://pypi.org/project/yfinance/. Accessed: 2021-04-28.

[31] PYPL. https://pypl.github.io/PYPL.html. Accessed: 2021-04-28.

[32] python.org. https://docs.python.org/3/fag/general.html#what-is-pytho
n—-good—-forl. Accessed: 2021-04-27.

[33] Reddit. https://www.reddit.com/r/wallstreetbets/. Accessed: 2021-04-06.

[34] Subreddit Stats. https://subredditstats.com/r/wallstreetbets. Accessed:
2021-04-06.

[35] Trading Treff. https://www.usinflationcalculator.com/. Accessed: 2021-04-07.

[36] YCharts. https://ycharts.com/glossary/terms/net_payout_yield_ttml
Accessed: 2021-05-23.

38

https://www.christian-luetgens.de/homematic/telegram/botfather/Chat-Bot.htm
https://www.christian-luetgens.de/homematic/telegram/botfather/Chat-Bot.htm
https://www.infrasoft.at/images/downloads/uebersicht_der_uml_diagramme.pdf
https://www.infrasoft.at/images/downloads/uebersicht_der_uml_diagramme.pdf
https://www.investopedia.com/terms/d/dividendyield.asp
https://alpaca.markets/
https://numpy.org/
https://polygon.io/pricing
https://pypi.org/project/aiohttp/
https://pypi.org/project/alpaca-trade-api/
https://pypi.org/project/asyncio/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/pandas/
https://pypi.org/project/yfinance/
https://pypl.github.io/PYPL.html
https://docs.python.org/3/faq/general.html#what-is-python-good-for
https://docs.python.org/3/faq/general.html#what-is-python-good-for
https://www.reddit.com/r/wallstreetbets/
https://subredditstats.com/r/wallstreetbets
https://www.usinflationcalculator.com/
https://ycharts.com/glossary/terms/net_payout_yield_ttm

	Einleitung
	Motivation
	Forschungsfragen
	Methoden
	Aufbau der Arbeit

	Konservative Formel
	Motivation der Konservativen Formel
	Verwendete Indikatoren
	Interpretation der Indikatoren
	Die Strategie
	Ergebnisse der Konservativen Formel

	Programmarchitektur und Design
	UML Diagramme
	Datenstruktur

	Implementierung
	Python
	API
	Verwendete Externe Bibliotheken
	Persistente Datenspeicherung
	Alerter
	Bewertungsalgorithmus
	Portfolio-Konstruktion
	Algorithmus zur Neuausrichtung des Portfolios
	Neuausrichtung jedes Quartal
	Umgang mit Errors

	Validierung und Diskussion
	Resultate
	Probleme bei der Umsetzung

	Zusammenfassung
	Optimierungsvorschläge
	Ausblick

	Literaturverzeichnis

